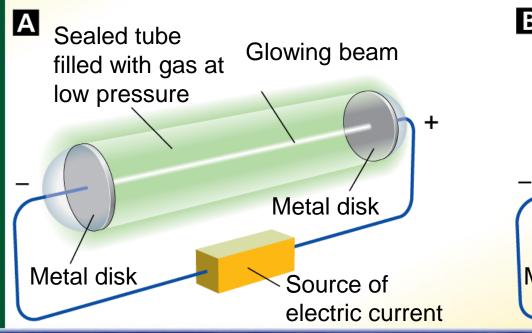
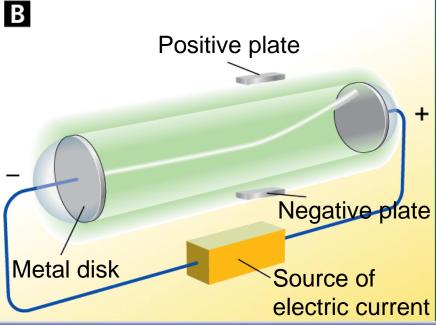
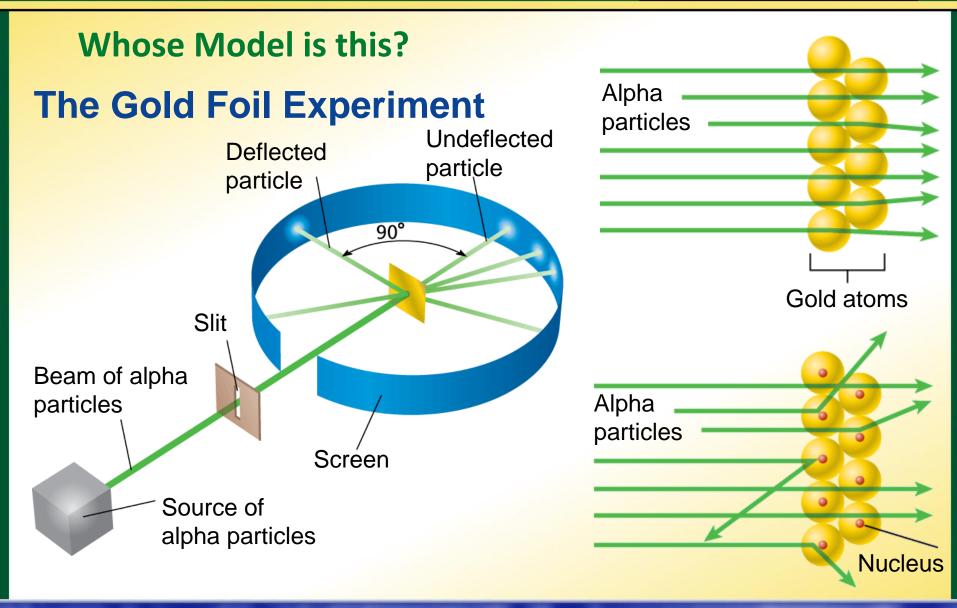
Practice Quiz


Chapter 4.1 and 4.2



Model of the Atom

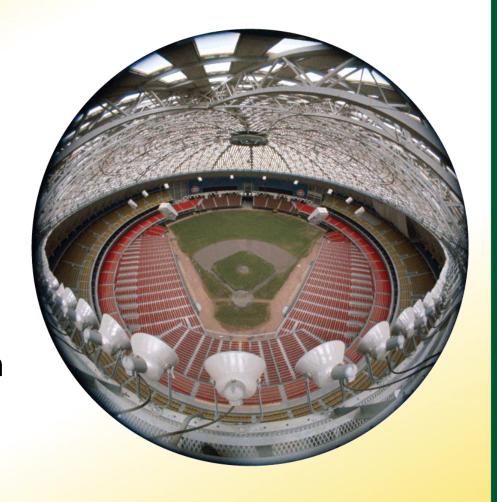
Which scientist discovered the electron? What model did he create to explain atomic structure?


Thomson's Model of the Atom

Thomson concluded that the particles in the beam had a negative charge (electrons) because they were attracted to the positive plate.

Thomson's model is called the "plum pudding" model. Today, it might be called the "chocolate chip ice cream" model.

Rutherford's Atomic Theory


- The positive charge of an atom is not evenly spread throughout the atom.
- Positive charge is concentrated in a very small, central area.
- The nucleus of the atom is a dense, positively charged mass located in the center of the atom.

Rutherford's Atomic Theory

The Houston Astrodome occupies more than nine acres and seats 60,000 people. If the stadium were a model for an atom, a marble could represent its nucleus.

The total volume of an atom is about a trillion (10¹²) times the volume of its nucleus.

- 1. Dalton's theory did not include which of the following points?
 - a. All elements are composed of atoms.
 - b. Most of an atom's mass is in its nucleus.
 - c. Compounds contain atoms of more than one element.
 - d. In a specific compound, atoms of different elements always combine in the same way.

- 1. Dalton's theory did not include which of the following points?
 - a. All elements are composed of atoms.
 - b. Most of an atom's mass is in its nucleus.
 - c. Compounds contain atoms of more than one element.
 - d. In a specific compound, atoms of different elements always combine in the same way.

ANS: B

- J. J. Thomson's experiments provided the first evidence of
 - a. atoms.
 - b. a nucleus.
 - c. subatomic particles.
 - d. elements.

Assessment Questions

- 2. J. J. Thomson's experiments provided the first evidence of
 - a. atoms.
 - b. a nucleus.
 - c. subatomic particles.
 - d. elements.

ANS: C

 The concept of an atom as a small particle of matter that cannot be divided was proposed by the ancient Greek philosopher, Democritus.

True **False**

Physical Science

Assessment Questions

 The concept of an atom as a small particle of matter that cannot be divided was proposed by the ancient Greek philosopher, Democritus.

True **False**

ANS:

Practice Problems

Find the # of protons, neutrons and electrons of each element. Assume neutral atoms. Add nuclear symbol to the right of each.

6

C

12.011

p+ =

n =

e-=

1

H

1.008

$$p+=$$

$$n =$$

$$e-=$$

11

Na

22.990

p+ =

n =

e-=

34

Se

78.96

p+=

n =

e-=

Practice Problems

of protons, neutrons and electrons of each element. For NEUTRAL atoms, # p + # e - # e

12.011

$$p+=6$$

$$n=6$$

$$e-=6$$

$$C^{12}$$

$$C^{12}$$

$$p+=1$$

$$n=0$$

$$e-=1$$

$$H^{1}$$

11 Na 22.990

$$p+=11$$
 $n=12$
 $e-=11$
 Na^{23}

$$p+=34$$
 $n = 45$
 $e-=34$
 Se^{79}

5 B

10.81

Atomic # = _____

Atomic Mass = _____

of Protons = _____

of Neutrons = _____

of Electrons = _____

Nuclear Symbol

$$(p + n)$$
 Atomic Mass = $\underline{11}$

of Protons = $\frac{5}{}$

of Neutrons = 6 (atomic mass - protons)

Nuclear Symbol

(atomic mass)

B 11

(atomic number)

35

Bromine

79.904

Atomic # = _____

Atomic Mass = _____

of Protons = _____

of Neutrons = _____

of Electrons = _____

Nuclear Symbol

35

Bromine

79.904

(p) Atomic # = 35

$$(p + n)$$
 Atomic Mass = 80

35 # of Protons =

45 (atomic mass - protons) # of Neutrons =

35 # of Electrons =

Nuclear **Symbol**

(atomic mass)

(atomic number)

Properties of Subatomic Particles

What are three subatomic particles?

Give their charge, mass, and location.

Properties of Subatomic Particles

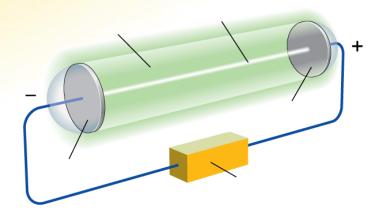
What are three subatomic particles?

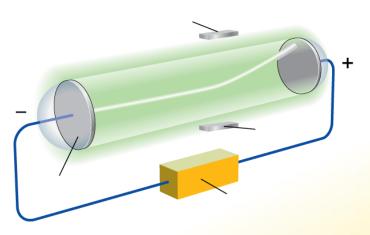
Properties of Subatomic Particles					
Particle	Symbol	Relative Charge	Relative Mass (proton = 1)	Actual Mass (g)	Model
Electron	e-	1-	<u>1</u> 1836	9.11 × 10 ⁻²⁸	
Proton	p+	1+	1	1.674×10^{-24}	
Neutron	n	0	1	1.675 × 10 ⁻²⁴	

Which scientist discovered:

Electrons

Neutrons




Which scientist discovered:

Electrons ... Thomson

Neutrons ... Chadwick

- 1. In which way do isotopes of an element differ?
 - a. number of electrons in the atom
 - b. number of protons in the atom
 - c. number of neutrons in the atom
 - d. net charge of the atom

- 1. In which way do isotopes of an element differ?
 - a. number of electrons in the atom
 - b. number of protons in the atom
 - c. number of neutrons in the atom
 - d. net charge of the atom

ANS: C

 Of the three subatomic particles that form the atom, the one with the smallest mass is the neutron.

True False

Assessment Questions

 Of the three subatomic particles that form the atom, the one with the smallest mass is the neutron.

True

False

ANS: F, electron

