

Chapter 6 The Periodic Table

Organizing the Elements

Classifying the Elements

Periodic Trends

Periodic Table of Elements

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 H Theinger	Atomic # Symbol	C	Solid				Metals			Nonmet	als						He	
2	line Line	e Be Be Brighter Brighter	H	Liquid Gas		Alkali me	Alkaline earth me	Lanthanoi	Transitio metaks	Poor me	Other	Noble gr	B	c	N	0	F	Ne Ne	E E
3	13 Na	Mg Mg 34,500	R	Unknow	n	Cir.	tals	Actinoids	2	ŧ		808	13 Al	54 Si	P P	10 S	CI	Ar	1
4	19 K	20 Ca Ganati 4.05	Sc hundur	22 Ti	Z3 V	Cr Cr	25 Mn Stranse	Fe	Co Column To Allow	20 Ni Nicose Nicose	Cu	30 Zn	Ga Ga	Ge	As As	Se Se	Br	M Kr store	1
5	Rb Rb	34 J Sr bankar	Y	40 Zr	A1 Nb	42 Mo	43 Tc	Ru	Rh	46 Pd National URAC	Ag	Cd	eo In Maria	Sn I	Sb	Te	63 I 3 Tables of State	S4 Xe	+410
6	SS Cs Casion Casion	Se Ba Ba Baile	57-71	12 Hr	Ta Ta	Z4 W	76 Ro	70 Os 31.11	Trailer H	79 Pt Patruer ration	Au	80 Hg		Pb	ED Bi Danual III. MONE	Po	At	Rn	
7	Fr Jonan	Ra	89-103	104 Rf and	105 Db	108 50	107 Bh	Hs	Mt Internet	110 Ds	Rg	Uub	Uut	Uug	Uup	Uuh	Uus	118 Uuo	publics
				F	For elen	nents wit	h no sta	ble isoto	opes, the	mass	umber o	of the iso	tope wit	h the lon	gest hal	f-life is i	n parenti	heses.	
						Design a	nd Interfa	ice Copyr	ight © 19	7 Micha	el Dayah	(michael(gdayah.c	om), http:	//www.pti	ible com/			
				67 La Latente Latente	Ce Ce	50 Pr Nametrican Internet	Nd Nd	01 Pm	Sm Internet	Eu	Gd Balance	CS Tb	Dy Dy Dates	Ho	Er Er Eksen	CO Tm Padare the state	70 Yb Yashini Iti ale	Lu Lu	ALC: NOT THE OWNER OF
				AC	STh	Pa	U U In the	Np	Pu Pu Dec	Am	Cm	97 Bk	Cf Cf (IT)	Es Longen	100 Fm	Md	No	Lr Lr	

Topics:

1. The Periodic Table

Objectives:

- 1. Explain the history of the Periodic Table (Dobereiner, Newlands, Mendeleev, Moseley).
- 2. Describe the arrangement of the periodic table (periods, groups, periodic law, classes of elements).
- 3. Classify elements based on electron configuration for Valence (outer electrons that bond).
 - 4. Explain periodic trends (electronegativity, atomic & ionic size, ionization energy)

6.1 Organizing the Elements >

Copy the chart below in your notebook:

The top row is the order of the EM spectra

radio	microwave	infrared	Visible ROY	Visible GBIV	ultraviolet	x-rays	gamma

6.1 Organizing the Elements >

Observe the items in all 24 squares below in terms of WARM-UP similar characteristics.

Fill in the columns and rows (for the chart you copied) based on a recognizable & sensible pattern of the items.

Meat radio	Seafood microwave	Soup infrared	Dairy Visible ROY	Breads Visible GBIV	Vegetables ultraviolet	Pasta x-rays	Fruit gamma
Pork 0.5 lb radio	Salmon steak microwave	Beans 5 pods ultraviolet	Milk 1 gallon visible ROY	Grapes 1 twig gamma	Beef 0.25 lb radio	Tomato Soup 8 oz infrared	Rye 1 loaf visible GBIV
Stew 32 oz infrared	Spaghetti 1 pot x-rays	Bananas 1 bunch gamma	Clams 1 bushel microwave	Cheese 1 slice visible ROY	Celery 1 stalk ultraviolet	Eggs 1 dozen visible ROY	Barley 1 stalk visible GBIV
Chicken Noodle 16 oz infrared	Wheat flour 2 lbs visible GBIV	Shrimp Cocktail microwave	Rigatoni 1 bite x-rays	Chicken 1 lb radio	Apple 1 bushel gamma	Cucumber 1 plant ultraviolet	Macaroni 1 bowl x-rays

6.1 Organizing the Elements > Answers

Meat	Seafood	Soup	Dairy	Breads	Vegetables	Pasta	Fruit
radio	microwave	infrared	Visible	Visible	ultraviolet	x-rays	gamma
			ROY	GBIV			
Beef 0.25 lb	Shrimp cocktail	Tomato Soup 8 oz	Cheese 1 slice	Rye 1 loaf	Beans 5 pods	Rigatoni 1 bite	Grapes 1 twig
Pork 0.5 lb	Salmon steak	Chicken Noodle 16 oz	Eggs 1 dozen	Barley 1 stalk	Cucumber 1 plant	Macaroni 1 bowl	Bananas 1 bunch
Chicken 1.0 lb	Clams 1 bushel	Stew 32 oz	Milk 1 gallon	Wheat flour 2 lbs	Celery 1 stalk	Spaghetti 1 pot	Apple 1 bushel

What guidelines did you use to make your Periodic Table of Foods? How did you determine "Groups"? *Food groups & EM radiation order* How did you determine "Periods" or "Rows"? *Amounts within each food group*

How was the periodic table developed and how is it arranged?

Reihen	Gruppe I. R*0	Gruppo 11. R0	Gruppe III. R'0'	Gruppe 1V. RH ⁴ RO ⁴	Grepps V. RH ³ R'0 ³	Grappe VI. RH ^a RO ⁹	Gruppo VII. RH R*0'	Gruppo Vill. R04
1	lI⊨1							
2	Li=7	Be=9,4	B=11	C==12	N=14	0=16	F==19	
3	Na==23	Mg === 24	Al== 27,8	Si=28	P=31	8=32	Cl == 35,5	
4	K=39	Ca== 40	-=4	Ti=48	V === 51	Cr= 52	Mn=55	Fo=56, Co=59, Ni=59, Cu=63.
5	(Ca=63)	Zn==65	-=68	-=72	As=75	So=78	Br == 80	
6	Rb == 85	Sr=97	?Yt=88	Zr== 90	Nb == 94	Mo≔96	-=100	Ru=104, Rh=104, Pd=106, Ag=108.
7	(Ag == 108)	Cd==112	In == 113	Sn==118	Sb==122	Te = 125	J== 127	
8	Cs== 133	Ba=137	?Di==138	?Co==140	-	-	-	
9	()	- 1	-	-	-	-	-	
10	-	-	?Er= 178	?La=180	Ta == 182	W=184	-	Os=195, Ir=197, Pt=198, Au=199.
11	(Au == 199)	flg==200	T1== 204	Pb== 207	Bi == 208	- 1	-	
12	-	-	-	Th=231	-	U==240	-	

6.1 Organizing the Elements > Searching for an Organizing Principle

In 1829, a German chemist, J. W. Dobereiner, published a classification system. He grouped known elements into triads, sets of three elements with similar properties.

One triad consisted of chlorine, bromine, and iodine.

They each look different, but have very **similar chemical properties**.

6.1 Organizing the Elements > Dobereiner's Triads

When the 3 elements in a	Example	Triad	Atomic Mass	Difference in Mass
triad are put in the order of their atomic masses.	1	chlorine bromine iodine	35.5 80 127	
the difference in mass between the	2	sulfur selenium tellurium	32 79 128	
first and second elements is about the same as the	3	calcium strontium barium	40 88 137	
difference in mass between the second and third elements.	4	lithium sodium potassium	7 23 39	

6.1 Organizing the Elements > John Newlands (1865)

He arranged the Periodic Table according to increasing atomic mass.

He established the "Law of Octaves" → noticing a repeating pattern of similar properties every eight elements on the Periodic table.

Newland's Law of Octaves

In 1869, the Russian chemist Dmitri Mendeleev produced the first orderly arrangement, or periodic table, of all 63 elements known at the time.

Mendeleev wrote the symbol for each element, along with the physical and chemical properties.

Mendeleev arranged the elements in order of increasing atomic mass.

6.1 Organizing the Elements > Mendeleev's Periodic Table Mendeleev noticed that similar properties of elements occurred after "**periods**" of varying lengths (rows on Periodic Table).

He established "Families" or "**Groups**" (*columns*) on the Periodic Table, possessing similar chemical properties.

Mendeleev predicted properties and masses of **unknown elements** that he knew existed. (e.g. scandium, gallium, germanium).

Mendeleev could NOT account for *lodine* whose atomic mass was less than Tellurium, but whose chemical properties belonged with Br and Cl's group.

The Modern Periodic Table

Henry Moseley (1887-1915)

- Contributed to the modern version of the periodic table.
- Arranged all the elements in order of increasing atomic number.
- Accounted for variations resulting from isotopes.

The Modern Periodic Table

- The **periodic table** of elements is an organized display of the chemical elements.
- In order of increasing atomic number (protons)
- Similarities in chemical properties
 - Similarities in electron configurations

Pel Click a	riod	iC ent's bo	Tab	le o ore info	of El	lem	ent	S		Elen	nent Cla	iss S	itate of	Matter	Orbi	tals (SP	'DF)
1 H Hydrogen 1.01		A	tomic Nu 1	mber		Von Mot	al		Alkali Mote	h							2 He Hellum 4.00
3 Li Lithlum 6.94	4 Be Berytlium 9.01	ŀ	H Hydrog	gen	5 	Semi-Me Halogen	tal	,	Alkaline Ea	arth Met Metal	al	5 B Boron 10.81	6 C Carbon 12.01	7 N Nitrogen 14.01	8 O Oxygen 16.00	9 F Fluorine 19.00	10 Ne Neon 20.18
11 Na Sodium 22.99	12 Mg Magnesium 24.31	(Av	e) Atomi 1.01	c Mass 	ľ	Noble G Lanthani	as de	F	Post-Trans Actanide	sition Me	etal	13 Al Aluminum 26.98	14 Si Silicon 28.09	15 P Phosphorus 30.97	16 S Sultur 32.07	17 Cl Chlorine 35.45	18 Ar Argon 39.95
19 K Potassium 39.10	20 Ca Caldum 40.08	21 Sc Scandium 44.96	22 Ti Titanium 47.87	23 V Vanadium 50.94	24 Cr Chromium 52.00	25 Mn Manganese 54.94	26 Fe Iron 55.85	27 CO Cobal 58.93	28 Ni t Nickel 8 58.69	29 Cu Copper 63.55	30 Zn ^{Zinc} 65.39	31 Ga Gaillum 69.72	32 Ge Germanium 72.81	33 As Arsenic 74.92	34 Se Selenium 78.96	35 Br ^{Bromine} 79.90	36 Kr Krypton 83.80
37 Rb Rubidium 85.47	38 Sr Strontium 87.62	39 Y Yttrium 88.91	40 Zr ^{Zirconium} 91.22	41 Nb Noblum 92.91	42 Mo Molybdenun 95.94	43 Tc Technetium 98.00	44 Ru Ruthenium 101.07	45 Rh Rhodlu 102.9	46 Pd Palladium 1 108.42	47 Ag silver 107.87	48 Cd Cadmium 112.41	49 In Indium 114.82	50 Sn ^{Tin} 118.71	51 Sb Antimony 121.76	52 Te Tellurium 127.60	53 lodine 126.90	54 Xe Xenon 131.29
55 Cs Ceslum 132.91	56 Ba Barlum 137.33	57 - 71	72 Hf Hathlum 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 Ir Indium 192.2	78 Pt Platinum 2 195.08	79 Au Gold 196.97	80 Hg Mercury 200.59	81 TI Thailium 204.38	82 Pb Lead 207.20	83 Bi Bismuth 208.98	84 Po Polonium 208.98	85 At Astatine 209.99	86 Rn Radon 222.02
87 Fr Francium 223.00	88 Ra Radium 226.00	89 - 103	104 Rf Rutherfordiu 281.00	105 Db Dubnium 262.00	106 Sg Seaborgium 266.00	107 Bh Bohrlum 264.00	108 Hs Hasslum 277.00	109 Mt Meitnerii 268.0	Um Darmstadtlu 0 281.00	111 Rg Roentgenlui 272.00	112 Cn Copernicium 285.00	113 Uut Ununtrium 284.00	114 Fl Flerovlum 289.00	115 Uup Ununpentlur 288.00	116 LV Livermorium 291.00	117 Uus ^{Ununseptlun} Unknown	118 Uuo Ununoctium 294.00
			57 La Lanthanum 138.91	58 Ce Cerlum 140.12	59 Pr Praseodymi 140.91	60 Nd Neodymlum 144.24	61 Pm Promethlum 145.00	62 Sm Samarlu 150.3	63 Eu Im Europlum 8 151.97	64 Gd Gadolinium 157.25	65 Tb Terblum 158.93	66 Dy Dysprosium 182.50	67 Ho Holmlum 184.93	68 Er Erblum 187.28	69 Tm Thulium 168.93	70 Yb Ytterblum 173.04	71 Lu Lutetlum 174.97
			89 Ac Actinium 227.00	90 Th Thorium 232.04	91 Pa Protactinium 231.04	92 U Uranium 238.03	93 Np Neptunium 237.00	94 Pu Plutoniu 244.0	95 Am Americium 0 243.00	96 Cm Curlum 247.00	97 Bk Berkellum 247.00	98 Cf Californium 251.00	99 ES Einsteinium 252.00	100 Fm Fermium 257.00	101 Md Mendelevlur 258.00	102 No Nobellum 259.00	103 Lr Lawrenclum 282.00

6.1 Organizing the Elements > Metals

Metals, Nonmetals, and Metalloids

ON

As one goes across a period, the properties of elements become less metallic and more nonmetallic. About 80% of the elements are metals.

6.1 Organizing the Elements > Metals, Nonmetals, & Metalloids Metalloids

- Good conductors of heat and electric current.
- High luster, or sheen ... ability to reflect light.
- Solids at room temperature, except for mercury (Hg).
- Ductile, can be drawn into wires.
- Malleable, can be hammered into thin sheets without breaking.
- Hard & Strong

6.1 Organizing the Elements > Nonmetals

Metals, Nonmetals, and Metalloids

- Tend to have properties opposite of metals.
- Usually poor conductors & brittle. 1 18 IA VIIIB IA 8A 15 16 13 14 2 17 2 VB IIA IIIB IVB VIB VIIB 1 н He Metalloids 2A Metals Nonmetals 3A 5A 7A 4A 6A 10 3 4 5 6 2 Li C Be B N 0 F Ne 10 8 9 11 5 7 12 3 6 4 13 11 12 IIIA VA 14 15 16 18 IVA VIA VIIA VIIIA IIB 17 IB 3 A Si P C Na Mg S Ar 3B **4**B 5B 7B 2B 68 18 21 22 23 25 26 27 28 29 30 31 32 33 34 35 36 20 24 19 4 K Ti V Ca Sc Cr Mn Fe Co Ni Cu Zn Ga Ge Kr As Se Br 40 Zr 49 51 37 38 41 42 43 44 45 48 50 52 53 54 39 46 47 5 Rb Sr Y Nb Rh Pd Sb Mo Tc Ru Ag Cd In Sn Te Xe L 75 79 80 81 83 84 85 86 55 56 71 72 73 74 76 77 78 82 6 Cs Hf TI Pb Bi Ta W Pt Au Ba Lu Re Os Ir Hg Po At Rn 106 108 111 87 88 103 104 105 107 109 110 112 113 114 115 116 118 117 7 Fr Rf Db Bh Ra Lr Sg Hs Mt Ds Rg Cn Uut Uuq Uup Uuh Uuo 57 58 59 60 61 62 65 69 70 63 64 66 67 68 Tb Ce Pr Nd Ευ Gd Dy Ho Er Yb La Pm Sm Tm 89 97 98 99 90 91 92 93 94 96 100 101 102 Th Bk Cf Pa U Es Ac Np Pu Cm Fm Md No Am

6.1 Organizing the Elements > Met Met

Metals, Nonmetals, and Metalloids

PEARSON

Metalloids

- "Staircase Elements" that sometimes behave like metals.
- Under other conditions, they may behave like nonmetals.
- Silicon is also present as the compound silicon dioxide in glass items and the earth's crust (*silica*).

Information for Each Element

Each element's entry on the periodic table shows:

- Chemical symbol
- Element name
- Atomic number
- Average atomic mass
- Electron configuration

Periodic Table	
	0 IA He
² ¹ ¹ Be of the Elements ⁵ ⁶ ⁷ ⁸ ⁹	10 F Ne
³ Na Mg IIB IVB VB VIB VIB — VII — IB IIB IIB IIB IIB IIB IIB IIB IIB	18 Ar
4 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 33 4 K Ca Sc Ti Y Cr Mn Fe Co Ni Cu Zn Ga Ge As Se F	36 Br Kr
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 5 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te St	54

When elements are arranged in order of increasing **atomic number**, there is a periodic pattern in their **physical and chemical properties**.

Periods

Horizontal rows on the periodic table

- Indicate principal energy level of valence electrons (Quantum number 1, n).
- Atomic number increases from left to right across the period.
- In each period the number of <u>Valence</u> electrons increases from left to right.
- Chemical properties change systematically across the periodic table.

Groups or Families

Groups: columns or families on the periodic table

- Elements within a group have the same chemical properties.
- Groups contain the same number of electrons in outermost level (<u>Valence</u> electrons), which explains why groups have the same properties.
- "A" groups \rightarrow electrons filling s and p valence orbitals. Magic number is "8" ... s2 + p6

S1

Alkali Metals

Alkali Metals (Group IA)

- Group 1 or IA
- Easily lose an electron to form a +1 cation in order to gain ideal electron configuration
- Typical properties:
 - Silver in color
 - Soft (can be cut with a knife)
 - Highly reactive with oxygen and water
 - Able to oxidize in air

Alkali Metals (Group IA)

- Group 1 or IA
- Easily lose an electron to form a +1 cation in order to gain ideal electron configuration

 $_{11}Na^{23}$

1s² 2s² 2p⁶ 3s¹

- "Magic number is "8" ... s2 + p6
- Is it easier for the metals to gain 7 electrons to make 8 or to lose 1 electron to have a full valence in the next lowest energy level?

+11 p <u>-10 e</u> **+1 charge**

Alkaline Earth Metals

Alkaline Earth Metals (Group IIA)

- Group 2 or IIA
- Lose two electrons to form
 a +2 cation in order to gain
 ideal electron configuration
- Typical properties:
 - Silver in color
 - More brittle than alkali metals
 - Somewhat reactive
 - Low in density, with low melting and boiling points

Alkaline Earth Metals (Group IIA)

- Group 2 or IIA
- Lose two electrons to form a
 +2 cation in order to gain ideal electron configuration

+12 p <u>-12 e</u> 0

 $_{12}Mg^{24}$

1s² 2s² 2p⁶ 3s²

- "Magic number is "8" ... s2 + p6
- Is it easier for the metals to gain 6 +1 electrons to make 8 or to lose 2 -10 electron to have a full valence in the next lowest energy level?

+12 p <u>-10 e</u> **+2 charge**

Transition Metals

Transition Metals (B Groups)

- Characterized by the presence of electrons in **d** orbitals
- E.g. Copper, silver, gold, iron
- Form colored compounds
- May have unusual properties:
 - Magnetism
 - High conductivity

These elements are also called the rare-earth

elements.

Groups

1	1			Pe	eri	00	lic	ЪΊ	`a]	ble	9				411			2 Но
2	3 Li	IA 4 Be		of	t	he	Е	le	m	en	ts		IIIA 5 B	6 C	7 7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg	IIIB	IVB	YВ	VIB	VIIB		— VII -		IB	IIB	13 A I	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 ¥	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 ND	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 Sg	107 NS	108 HS	109 Mt	110 110	111 111	112 112	113 113					

*Lanthanide 58 59 60 70 Pr Nd Pm Sm Yb Ce Eu Gd Tb Dy Ho Er Tm Lu Series 102 103 98 99 100 101 92 + Actinide 91 96 97 Pa Np Bk Th U Pu Åm. Cm Cf Es Fm Md No Lr Series

InnerTransition Metals

Inner Transition Metals (B Groups)

- Characterized by the presence of electrons in f orbitals
- Lanthanides: elements 57-71
- Actinides: elements 89-103
- Radioactive (e.g. U-92)
- Present in only trace amounts on Earth

	IA 1	1		D			11.	. п		L1.	~							0	1
1	Н	IA		P(en	100	щ	21	a	DI	e		IIA	IVA	٧A	VIA	VIIA	Не	
2	3 Li	4 Be		of	f t]	he	Ε	le	m	en	ts		5 B	6 C	7 N	8 0	9 F	10 Ne	
3	11 Na	12 Mg	IIIB	IVB	¥В	ΥIB	VIIB		— VII -		IB	IIB	13 A I	14 Si	15 P	16 S	17 CI	18 Ar	
4	19 K	20 Ca	21 Sc	22 Ti	23 Y	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	•2 •
5	37 Rb	38 Sr	39 - Y	40 Zr	41 Nb	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe	S ² n ³
6	55 CS	56 Ba	57 *La	72 Hf	73 Ta	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
7	87 Fr	88 Ra	89 +Ac	104 Rf	105 Ha	106 Sg	107 NS	108 HS	109 Mt	110 110	111 111	112 112	113 113						valence
																		-	vulchice
*L S	antha eries	Inide	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu			
+ A S	ctinide eries	e	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr			

Halogens

Halogens (Group VIIA)

- Group 17 or VIIA
- Easily gain an electron to form
 a –1 anion in order to gain ideal electron configuration
- Typical properties
 - Highly reactive with metals
 - Toxic to organisms
 - Most occur as diatomic molecules (F₂, Cl₂, Br₂, l₂)
 - React with metals to form salts

Halogens (Group VIIA)

- Group 17 or VIIA
- Easily gain an electron to form
 a –1 anion in order to gain ideal
 electron configuration
- "Magic number is "8" ... s2 + p6
- Is it easier for the non-metal to gain 1 electron to make 8 or to lose 7 electrons to have a full valence in the energy level?

17Cl³⁵ +17 p -17 e 0 1s² 2s² 2p⁶ 3s² 3p⁵ +17 p -18 e -1 charge

IA 1 8 3 Li 11 Na	IIA 4 Be 12 Mg	IIIB	Po O	eri f ti	io he	dic E	e T le	a m	ble en	e .ts ⊪	IIB	IIIA 5 B 13 A I	IVA 6 C 14 Si	VA 7 N 15 P	VIA 8 0 16 5	9 F 17 CI	0 2 He 10 Ne 18 Ar	
19 K 37 Rb	20 Ca 38 Sr	21 Sc 39 Y	22 Ti 40 Zr	23 Y 41 Nb	24 Cr 42 Mo	25 Mn 43 Tc	26 Fe 44 Ru	27 Co 45 Rh	28 Ni 46 Pd	29 Cu 47 Aq	30 Zn 48 Cd	31 Ga 49 In	32 Ge 50 Sn	33 As 51 Sb	34 Se 52 Te	35 Br 53	36 Kr 54 Xe	S2n6
55 Cs 87	56 Ba	57 *La	72 Hf 104	73 Ta 105	74 ₩ 106	75 Re	76 Os 108	77 Ir 109	78 Pt	79 Au 111	80 Hg	81 TI 113	82 Pb	83 Bi	84 Po	85 At	86 Rn	S_p
Fr Lantha Series	Ra Inide	+A0 58 Ce 90	59 Pr 91	60 Nd 92	51 Pm 93	Ns 62 Sm 94	Hs 63 Eu 95	Mt 64 Gd 96	110 65 Tb 97	111 66 Dy 98	67 Ho 99	113 68 Er 100	69 Tm 101	70 Yb 102	71 Lu 103			valence
	IA 1 H 3 Li 11 Na 19 K 37 Rb 55 Cs 87 Fr Lantha Series	IA I H IIA IIA IIA IIA IIA IIA	IA I H I H I A I H I H I H I H I H I H I H I H I H I H I H I H I H I H I H I I I I I I I I I I I I I	IA P 1 IIA P 3 4 O 3 4 O 3 4 O 3 1 Be O 11 12 IIB IYB 19 20 21 22 K Ca Sc Ti 37 38 39 40 Rb Sr Y Zr 55 56 57 72 Cs Ba *La Hf 87 88 89 104 Fr Ra *Ac Rf Lanthanide 58 59 Ce Pr Series 90 91 90 91	IA Period 1 IA Period 3 4 Be Of t) 3 I Be Of t) 11 12 Mg IIB IVB VB 19 20 21 22 23 K Ca Sc Ti V 37 38 39 40 41 Rb Sr Y Zr Nb 55 56 57 72 73 Ca Ser Y Zr Nb 55 56 57 72 73 87 88 89 104 105 Fr Ra +Ac Rf Ha Series 90 91 92 90	IA Period H IA Period Li Be Of the II II Be Of the II II Mg IIB IVB VB VB III Ca Sc Ti V Cr 37 38 39 40 41 42 Rb Sr Y Zr Nb Mo 55 56 57 72 73 74 87 Ba +Ac Rf Ha Sg Series Sa 59 60 61 Pm Series	IA Periodic H IA Periodic Li Be Of the E I Be IVB VB VIB I I2 Mg IIB IVB VB VIB VIB I Ca Sc Ti V Cr Mn 37 38 39 40 41 42 43 Rb Sr Y Zr Nb Mo Tc 55 56 57 72 73 74 75 Ba *La Hf Ta W Re 87 88 89 104 105 106 107 Fr Ra *Ac Rf Ha Sg Ns Series 90 91 92 93	IA Periodic 7 3 4 3 4 1 8 1 8 11 12 Na Mg 11 12 12 22 23 24 25 26 K Ca Sc Ti Y Cr Mn Fe 37 38 Sr Y Zr Nb Mo Tc Ru 55 56 57 72 73 74 75 76 Sr 8a 89 104	IA Periodic Ta I IA I IA I Be I Be I Be II II II Be II Be III Be IIII Be IIII Be IIII Be IIII IIII IIII IIII IIII IIII IIII IIIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IA Periodic Table 1 IA 3 4 1 Be 11 I2 Na Mg II II 12 Mg II Mg III III 12 Mg III Mg IIII III III Mg III III III III III Mg IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IA Periodic Table 1 H IA 3 I 4 3 I 4 3 I 4 3 I 4 3 I 4 3 I 4 1 I 12 Na Mg IIB IVB VB VIB VIB 11 12 Na Mg IIB IVB VIB VII IB 19 20 21 22 23 24 25 26 27 28 29 K Ca Sc Ti Y Cr Mn Fe Co Ni Cu 37 38 39 40 41 42 43 44 45 46 47 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag 55 56 57 72 73 74 75 76 77 78 79 Cs Ba *La Hf <t< td=""><td>IA Periodic Table of the Elements I I Be I Be IVB VB VIB VI IB IB I I2 Mg IIB IVB VB VIB VI IB IB I I2 Mg IIB IVB VB VIB VI IB IB I I2 Mg IIB IVB VB VIB VI IB IB I I2 II I2 II II II IB IB I II I2 II III IIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIIII IIIIIIIIIIIIIIIIIIIIII</td><td>IA Periodic Table of the Elements IIA 1 IA Be Of the Elements IIA 1 I2 IIB IVB VB VIB VII IB IB IB 19 20 21 22 23 24 25 26 27 28 29 30 31 K Ca Sc Ti Y Cr Mn Fe Co Ni Cu Zn Ga 37 38 39 40 41 42 43 44 45 46 47 48 49 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In 55 56 57 72 73 74 75 76 77 78 79 80 81 87 88 89 104 105 106 107 108 109 110 111 112 113 87 88 89 104</td><td>IA Periodic Table of the Elements IIA IVA I IA Be Of the Elements IIA IVA I Be IVB VB VIB VII IB IB IB IVA IA Mg IIB IVB VB VIB VII IB IB IA Si IP 20 21 22 23 24 25 26 27 28 29 30 31 32 K Ca Sc Ti Y Cr Mn Fe Co Ni Cu Zn Ga Ge 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Sn <t< td=""><td>IA Periodic Table I IA IVA VA I IA IVA VA I Be Of the Elements IIA IVA VA I I2 Be IVB VB VIB VII IB IIB IIB II IS II IS II IS II IS II IS III III III III III III III IIII IIII IIII IIII IIIII IIII IIII IIII IIII IIIII IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td><td>IA Periodic Table of the Elements IIIA IVA VA VIA II IIA IVA VA VIA II IIA IVA VA VIA II IIA IVA VA VIA IIA VIA IIA VIA IIA IIIA VIA VIA VIA VIA</td><td>IA Periodic Table I IA IVA VA VIA VIA I IA Be IVA VA VIA VIA I IA Be IVA VA VIA VIA I IA Be IVA VA VIA VIA I Be IVA VA VIA VIA IIA I Be IVA VA VIA VIA IIA IIA IVA VA VIA VIA IIA IVA VA VIA VIA IIA IVA VB VIB VIB VIB VIB VIB IIA IVA VA VIA VIA IIA IVA VA VIA VIA IB IB IB IIA IVA VA VIA VIA IIA IVA VA VIA IIA IVA VA VIA VIA</td><td>IA Periodic Table IIA IVA VA VIA VIA Periodic Table 3 4 6 6 7 8 9 10 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti Y Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 K Ca Sr Y Nb Mo TC Ru Rb Pd <t< td=""></t<></td></t<></td></t<>	IA Periodic Table of the Elements I I Be I Be IVB VB VIB VI IB IB I I2 Mg IIB IVB VB VIB VI IB IB I I2 Mg IIB IVB VB VIB VI IB IB I I2 Mg IIB IVB VB VIB VI IB IB I I2 II I2 II II II IB IB I II I2 II III IIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIIII IIIIIIIIIIIIIIIIIIIIII	IA Periodic Table of the Elements IIA 1 IA Be Of the Elements IIA 1 I2 IIB IVB VB VIB VII IB IB IB 19 20 21 22 23 24 25 26 27 28 29 30 31 K Ca Sc Ti Y Cr Mn Fe Co Ni Cu Zn Ga 37 38 39 40 41 42 43 44 45 46 47 48 49 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In 55 56 57 72 73 74 75 76 77 78 79 80 81 87 88 89 104 105 106 107 108 109 110 111 112 113 87 88 89 104	IA Periodic Table of the Elements IIA IVA I IA Be Of the Elements IIA IVA I Be IVB VB VIB VII IB IB IB IVA IA Mg IIB IVB VB VIB VII IB IB IA Si IP 20 21 22 23 24 25 26 27 28 29 30 31 32 K Ca Sc Ti Y Cr Mn Fe Co Ni Cu Zn Ga Ge 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Sn Sn <t< td=""><td>IA Periodic Table I IA IVA VA I IA IVA VA I Be Of the Elements IIA IVA VA I I2 Be IVB VB VIB VII IB IIB IIB II IS II IS II IS II IS II IS III III III III III III III IIII IIII IIII IIII IIIII IIII IIII IIII IIII IIIII IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td><td>IA Periodic Table of the Elements IIIA IVA VA VIA II IIA IVA VA VIA II IIA IVA VA VIA II IIA IVA VA VIA IIA VIA IIA VIA IIA IIIA VIA VIA VIA VIA</td><td>IA Periodic Table I IA IVA VA VIA VIA I IA Be IVA VA VIA VIA I IA Be IVA VA VIA VIA I IA Be IVA VA VIA VIA I Be IVA VA VIA VIA IIA I Be IVA VA VIA VIA IIA IIA IVA VA VIA VIA IIA IVA VA VIA VIA IIA IVA VB VIB VIB VIB VIB VIB IIA IVA VA VIA VIA IIA IVA VA VIA VIA IB IB IB IIA IVA VA VIA VIA IIA IVA VA VIA IIA IVA VA VIA VIA</td><td>IA Periodic Table IIA IVA VA VIA VIA Periodic Table 3 4 6 6 7 8 9 10 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti Y Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 K Ca Sr Y Nb Mo TC Ru Rb Pd <t< td=""></t<></td></t<>	IA Periodic Table I IA IVA VA I IA IVA VA I Be Of the Elements IIA IVA VA I I2 Be IVB VB VIB VII IB IIB IIB II IS II IS II IS II IS II IS III III III III III III III IIII IIII IIII IIII IIIII IIII IIII IIII IIII IIIII IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	IA Periodic Table of the Elements IIIA IVA VA VIA II IIA IVA VA VIA II IIA IVA VA VIA II IIA IVA VA VIA IIA VIA IIA VIA IIA IIIA VIA VIA VIA VIA	IA Periodic Table I IA IVA VA VIA VIA I IA Be IVA VA VIA VIA I IA Be IVA VA VIA VIA I IA Be IVA VA VIA VIA I Be IVA VA VIA VIA IIA I Be IVA VA VIA VIA IIA IIA IVA VA VIA VIA IIA IVA VA VIA VIA IIA IVA VB VIB VIB VIB VIB VIB IIA IVA VA VIA VIA IIA IVA VA VIA VIA IB IB IB IIA IVA VA VIA VIA IIA IVA VA VIA IIA IVA VA VIA VIA	IA Periodic Table IIA IVA VA VIA VIA Periodic Table 3 4 6 6 7 8 9 10 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti Y Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 K Ca Sr Y Nb Mo TC Ru Rb Pd <t< td=""></t<>

Noble Gases

Noble Gases (Group VIIIA)

Group 18 or VIIIA

Inert gases (nonreactive) have ideal electron configuration

- Typical properties
 - Odorless and tasteless
 - Nonreactive and nonflammable
 - Have extremely low boiling points (i.e. gases)
 - Produce characteristic colors
 when excited electrically

The Periodic Table Song (2:44) http://somup.com/cF6QFinnyQ

Tom Lehrer (1970 ... 1:47) <u>The Elements Song</u> <u>http://somup.com/cFQ22hVSKJ</u>

Octet Rule – Stability of Atoms When Bonding

The stability of an atom is associated with electron configuration:

The maximum number of electrons in outer level is 8e⁻ [*s* orbital holds up to 2 e⁻, *p* orbitals hold up to 6 e⁻]

8e- represents a very stable arrangement (noble gas configuration)

Helium ($_2$ He⁴) has only 2ebut a complete outer shell.

Atoms tend to combine with other atoms in such a way that each atom has eight electrons in its valence shell, giving it the same electron configuration as a noble gas.

6.1 Organizing the Elements > Electron Configurations in Groups

Valence Electrons

The number of electrons in the highest occupied energy level (n) level (valence electrons.)

Lithium (Li)	1 <i>s</i> ² 2s ¹	Carbon			
		(C)	$1s^22s^22p^2$		
(Na)	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ¹	Silicon	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ² 3 <i>p</i> ²		
Potassium (K)	1 <i>s</i> ²2 <i>s</i> ²2 <i>p</i> ⁶ 3 <i>s</i> ²3 <i>p</i> ⁶ 4 <i>s</i> ¹	(Si)			

Helium (He)	1 <i>s</i> ²
Neon (Ne)	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶
Argon (Ar)	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ² 3 <i>p</i> ⁶
Krypton (Kr)	1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ² 3 <i>p</i> ⁶ 2 <i>d</i> ¹⁰ 4 <i>s</i> ² 4 <i>p</i> ⁶

Kernel & Valence Electrons in A Groups

Example:

Phosphorus (P)

• Highest n orbitals = valence electrons

 $3s^23p^3$ Core

kernel

 $1s^22s^22p^6$

Kernel & Valence Electrons in A Groups

Example:

Phosphorus (P)

1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶	3s ² 3p ³
---	---------------------------------

Core kernel	valence
----------------	---------

Highest n orbitals = valence electrons.

- All other orbitals = kernel electrons (use [Ne]).
- Group number relates to the number of valence electrons.
- Noble gases (group VIII or 18): full valence shell.

Kernel & Valence Electrons in B Groups

Examples:

Cobalt (Co)

1 <i>s</i> ² 2 <i>s</i> ² 2 <i>p</i> ⁶ 3 <i>s</i> ² 3 <i>p</i> ⁶	4 <i>s</i> ²3ď
Core / kernel	valence

 NOTICE that valence electrons are still in the highest "n" s and p orbitals.

Partially filled *d* and *f* orbitals = valence electrons

Core and Valence Electrons in B Groups

Examples:

Cobalt (Co)

[Ar]	4s ² 3d ⁷			
Core / kernel	valence			

- NOTICE that valence electrons are still in the highest "n" s and p orbitals
- Partially filled *d* and *f* orbitals = valence electrons

Group "A" & "B" Elements distinguished by sublevels

Review of the Periodic Table Copy the Blank table and LABEL

- A Groups with valence electron configuration
- B Groups (transition elements, inner transition)
- Metals, non-metals, metalloids
- Alkali & Alkaline Earth Metals, Halogens, Noble Gases
- What ion would the major groups form?

Review of the Periodic Table

What trends become apparent from the arrangement of electrons in the periodic table?

Trends in Atomic Size

Atomic Radii (Size)

This size is expressed as an atomic radius, and is one-half of the distance between the nuclei of two atoms of the same element when the atoms are joined. (picometers or 10⁻¹² m)

Trends in Atomic Size

Trends in Atomic Size

In general, atomic size

- decreases from left to right across a period.
- increases going down a group.

Trends of Atomic Radii

Electrons are added:

- To the same energy level across a period (stronger nuclear charge draws them in).
 - E.g. using a larger magnet to pick up metals.
- To a higher energy level down a group (the atom is much larger and electrons more energetic).
 - E.g. placing the electrons in a bigger room to accommodate the larger atom.

Atomic radii tend to:

- Decrease across a period.
- Increase down a group.

6. 3 Periodic Trends

Trends in Atomic Size

PEARSON

51

The Shielding Effect

The increase in the number of occupied orbitals shields electrons in the highest occupied energy level from the attraction of protons in the nucleus (e.g. solar eclipse).

Size generally decreases

Trends of Ionic Radii

lonic radius is a measure of the size of an ion.

Anion e.g. $CI \rightarrow CI^{-}$

DECREASE for cations across a period.

- Groups 1A 3A elements lose electrons to become cations.
- INCREASE for anions across a period.
 - Groups 4A 8A elements gain electrons to become anions.

Increase down a group.

lons

Metals, such as Sodium lose electrons when bonding, giving the sodium ion a net positive charge (11 protons - 10 electrons). The positive ion is called a **cation** and is written as Na⁺. The ionic size is SMALLER than the atomic size.

lons

Nonmetals, such as chlorine, *gain* electrons when bonding, producing an **anion** (negative ion): (+17 p - 18 e). This is written: Cl⁻. The ionic size is GREATER than the atomic size.

In general, metals tend to form cations. Nonmetals tend to form anions.

Ionization Energy

The energy required to remove an electron from an atom.

The **tendency to lose electrons** is evidence of **????** character (*to gain ideal electron configuration*).

zation Energy Inc

514.6

The energy required to remove the first electron from an atom is called the first ionization energy.

Ionization energy ???? across a period & ???? down a group.

💦 😳 🔣 💽 💽 💽 💽 💽 💽 💽										
1										
	ΙA								VIIA	VIIIA
	Η								Н	He
	1312.0	IIA			IIIA	IVA	٧A	VIA	1312.0	2372.3
	Li	Be			В	С	Ν	0	F	Ne
	520.2	899.4			800.6	1086.4	1420.3	1313.9	1681.0	2080.6
	Na	Mg			Al	Si	Р	S	Cl	Ar
	495.8	737.7			577.8	786.4	1011.7	999.6	1251.1	1520.5
	Κ	Ca			Ga	Ge	As	Se	В	Kr
	418.8	589.8		1	578.8	762.1	947	940.9	1139.9	1360.7
	Rb	Sr			In	Sn	Sb	Te	Ι	Xe
	403.0	549.5			558.3	708.6	833.7	869.2	1008.4	1170.4
	Cs	Ba	$\mathcal{A}\mathcal{P}$	1	Tl	Pb	Bi	Po	At	Rn
	375.7	508.1			595.4	722.9	710.6	821		1047.8
	Fr	Ra								

Ionization Energy

TRY IT

Ionization Energy

The energy required to remove an electron from an atom.

Energy Increases

The **tendency to lose electrons** is evidence of **metallic** character (*to gain ideal electron configuration*).

514.6

The energy required to remove the first electron⁴ from an atom is called the first ionization energy.

Ionization energy increases across a period & decreases down a group.

2 7 1 1 2 3 9	64.33			nizatio	на Еле	irgy in	creasi	es	
IA								VIIA	VIIIA
Н								Н	He
1312.0	IIA			AIII	IVA	VA	VIA	1312.0	2372.3
Li	Be			В	С	Ν	0	F	Ne
520.2	899.4			800.6	1086.4	1420.3	1313.9	1681.0	2080.
Na	Mg			Al	Si	Р	S	Cl	Ar
495.8	737.7			577.6	786.4	1011.7	999.6	1251.1	1520.5
Κ	Ca			Ga	Ge	As	Se	В	Kr
418.8	589.8			578.8	762.1	947	940.9	1139.9	1360.7
Rb	Sr		12	In	Sn	Sb	Te	Ι	Xe
403.0	549.5			558.3	708.6	833.7	869.2	1008.4	1170.4
Cs	Ba	10		T1	Pb	Bi	Po	At	Rn
375.7	508.1		700	595.4	722.9	710.6	821		1047.8
Fr	Ra								

Ionization Energy

TRY

57

Trends in Ionization Energy

Metals tend to lose/gain electrons, meaning it takes less/more energy (lower/higher I.E.)?

Non-metals tend to lose/gain electrons, meaning it would require less/more energy (lower/higher I.E.)?

Trends in Ionization Energy

Metals tend to lose electrons, meaning it takes LESS energy (lower I.E.)

Non-metals tend to gain electrons, meaning it would require MORE energy (higher I.E.)

Enrichment

The irregularities are produced when electrons enter the "p" sublevel (e.g. Be, Mg) and again when the electrons fill the first "p" orbital (Hund's Rule) [e.t. N, P]

Electronegativity

The measure of the **electron attracting power** (ELECTRON AFFINITY) of an atom when it bonds with another atom (*to gain ideal electron configuration*).

A property used to predict Bonding type during a reaction.

- Increase/decrease along a period or row?
- Increase/decrease down a group or family?

Electronegativity

The measure of the **electron attracting power** (ELECTRON AFFINITY) of an atom when it bonds with another atom (*to gain ideal electron configuration*).

A property used to predict Bonding type during a reaction.

- INCREASES along a period or row.
- DECREASES down a group or family.

Trends in Electronegativity

PEARSON

Describe metals in terms of electrons and electronegativity.

Describe non-metals in terms of electrons and electronegativity.

Trends in Electronegativity

PEARSON

Metals do not "gain" electrons, meaning LESS electronegativity.

Non-metals DO gain electrons, meaning MORE electronegativity.

Electronegativity Values for Selected Elements

Н 2.1						
Li	Ве	В	С	N	0	F
1.0	1.5	2.0	2.5	3.0	3.5	4.0
Na	Mg	AI	Si	Р	S	CI
0.9	1.2	1.5	1.8	2.1	2.5	3.0
К	Са	Ga	Ge	As	Se	Br
0.8	1.0	1.6	1.8	2.0	2.4	2.8
Rb	Sr	In	Sn	Sb	Те	I
0.8	1.0	1.7	1.8	1.9	2.1	2.5
Cs	Ва	TI	Pb	Bi		
0.7	0.9	1.8	1.9	1.9		

SUMMARY

Atomic size i lonic siza lonization energy Electronegatıvıty Nuclear charge Shielding

... going across a period → ... going down a group ↓ Atomic size lonization energy Electronegativity Nuclear charge Shielding

Determine whether each Trend increases or decreases.

SUMMARY

Atomic size increases lonic size increases lonization energy decreases Electronegativity decreases Nuclear charge increases Shielding increases

Atomic size decreases lonization energy increases Electronegativity increases Nuclear charge increases Shielding is constant

The Arrangement of the Periodic Table

The periodic table contains a great deal of information on the elements.

- Periods refer to horizontal rows of the periodic table.
- Groups or families refer to vertical columns of the periodic table.
- Cells of the periodic table contain information such as the atomic symbol, atomic number, atomic mass, name of the element, electron configuration, and possible oxidation numbers.
- Elements can be categorized broadly as metals, nonmetals, or semimetals (metalloids).

Classifying the Elements

Groups

- Alkali metals: most reactive metals, soft, oxidize quickly.
- Alkaline earth metals: not as reactive as alkali metals, brittle, shiny.
- Transition metals: form colored compounds, good conductors of electricity.
- Halogens: most reactive nonmetals.
- Noble gases: lowest chemical reactivity, used in lighting.
- Inner transition metals: radioactive, used in nuclear power plants.

ation States

s-block

18 0

4.00260

	IONIZATION ENERGIES AND ELECTRONEGATIVITIES														
1	1													1	8
н	$\begin{array}{c c} \hline 313 \\ \hline 313 \\ \hline 2.2 \\ \hline 2 \\ \hline 2 \\ \hline 2 \\ \hline 13 \\ \hline 14 \\ \hline 15 \\ \hline 16 \\ \hline 17 \\ \hline 17 \\ \hline 17 \\ \hline 17 \\ \hline 10 \\ \hline 10 \\ \hline 17 \\ \hline 10 \\ $									He	567				
Li	125 1.0	Be	215 1.5	в	191 2.0	с	260 2.6	N	336 3.1	0	314 3.5	F	402 4.0	Ne	497
Na	119 0.9	Mg	176 1.2	AI	138	Si	188 1.9	Р	242 2.2	s	239 2.6	Cl	300 3.2	Ar	363
к	100 0.8	Ca	141 1.0	Ga	138 1.6	Ge	182 1.9	As	226 2.0	Se	225 2.5	Br	273 2.9	Kr	323
Rb	96 0.8	Sr	131 1.0	In	133 1.7	Sn	169 1.8	Sb	199 2.1	Te	208 2.3	I	241 2.7	Xe	280
Cs	90 0.7	Ba	120 0.9	TI	141 1.8	РЬ	171 1.8	Bi	168 1.9	Ро	194 2.0	At	2.2	Rn	248
Fr	0.7	Ra	122	* Ar	bitrar	y sca	ile ba	sed o	on fluo	orine	= 4.	0			

I

....

Polyatomic Ions

Name	Formula	Name	Formula	
perPhosphate	(PO ₅) ⁻³	perCarbonate	$(CO_4)^{-2}$	
Phosphate	$(PO_4)^{-3}$	Carbonate	$(CO_3)^{-2}$	
Phosphite	$(PO_3)^{-3}$	Carbonite	$(CO_2)^{-2}$	
hypoPhosphite	$(PO_2)^{-3}$	hypocarbonite	(CO) ⁻²	
perChlorate	$(ClO_4)^{-1}$	perNitrate	$(NO_4)^-$	
Chlorate	$(ClO_3)^{-1}$	Nitrate	(NO_3)	
Chlorite	$(ClO_2)^{-1}$	Nitrite	$(NO_2)^-$	
hypoChlorite	(ClO) ⁻¹	Hyponitrite	(NO) ⁻	Ammonium
perSulfate	$(SO_5)^{-2}$	perChromate	$(CrO_5)^{-2}$	$(\mathrm{NH}_4)^{+1}$
Sulfate	$(SO_4)^{-2}$	Chromate	$(CrO_4)^{-2}$	
Sulfite	(SO ₃) ⁻²	Chromite	$(CrO_3)^{-2}$	
hyposulfite	(SO_2^{-2})	Hypochromite	$(CrO_2)^{-2}$	
Acetate	$(C_2H_3O_2)^{-1}$	Cyanide	(CN) ⁻¹	
Hydroxide	(OH) ⁻¹	Manganate	$(MnO_4)^{-2}$	