

Chapter 10 Chemical Quantities

The Mole: A Measurement of Matter Mole-Mass and Mole-Volume Relationships Percent Composition and Chemical Formulas

MOLAR QUANTITIES CHAPTER 10B

Topics:

1. Molar Quantities

Objectives:

- 1. Calculate Percent Composition (Percent by Mass of elements in a compound) using mass, formulas, and percentages.
- 2. Determine mole ratios of elements within a formula.
- 3. Understand and calculate Empirical Formulas using mass, percentages, and moles.
- 4. Determine Molecular Formula from Empirical Formulas.
- 5. Understand and utilize the mole in mathematical computations according to the mole concept (Avogadro's Number).
- 6. Calculate Molar Mass of Elements and Compounds. Interconvert moles and mass.
- 7. Calculate Molar Volume at STP. Interconvert moles and liters, molar mass and density.

Review Molar Quantities

Use the periodic table to find the molar mass of each of the following elements.

Sodium (Na):

Oxygen (O):

Carbon (C):

Consider sodium oxide, Na₂O. What do the subscripts represent?

What is the molar mass of sodium oxide?

Consider calcium nitrate, $Ca(NO_3)_2$. What do the subscripts represent? How many atoms of each element are there?

What is the molar mass of calcium nitrate?

If a sample contains 21.2 g N_2 , how many moles of N_2 does it contain?

How many liters of N₂ gas is this?

How many molecules of N₂ gas is this?

Review Molar Quantities

Use the periodic table to find the molar mass of each of the following elements.

Sodium (Na): 22.99 g/mol Oxygen (O): 16.00 g/mol Carbon (C): 12.01 g/mol

Consider sodium oxide, Na₂O. What do the subscripts represent?

There are two atoms of sodium and one atom of oxygen.

What is the molar mass of sodium oxide?

Na $2 \times 23.0 \text{ g/mol} = 46.0 \text{ g/mol}$ O $1 \times 16.0 \text{ g/mol} = \underline{16.0 \text{ g/mol}}$ = 62.0 g/mol Consider calcium nitrate, $Ca(NO_3)_2$. What do the subscripts represent? How many atoms of each element are there?

There are two nitrate ions. 1 Ca, 2 N, 6 O

What is the molar mass of calcium nitrate?

Ca $1 \times 40.1 \text{ g/mol} = 40.1 \text{ g/mol}$ N $2 \times 14.0 \text{ g/mol} = 28.0 \text{ g/mol}$ O $6 \times 16.0 \text{ g/mol} = 96.0 \text{ g/mol}$ = 164 g/mol

If a sample contains 21.2 g N_2 , how many moles of N_2 does it contain?

21.2 g x 1 mol/28.0 g = 0.757 mol

How many liters of N₂ gas is this?

0.757 mol x 22.4 L/1 mol = 17.0 L

How many molecules of N₂ gas is this?

 $0.757 \text{ mol x } 6.02 \times 10^{23} \text{ molecules}/1 \text{ mol}$ = $4.56 \times 10^{23} \text{ molecules}$

CuSO₄ hydrate

The basis for accurate **QUANTITATIVE** analysis is the proportion by weight or mass of elements in a formula.

If we added the individual masses of each atom in a formula, we will obtain the total mass for the compound or molecule:

Total % of all elements in a formula = 100 %

It follows that the proportion of any ONE element in a sample is equal to the mass of the sample divided by the total mass, therefore:

% element = mass of the element / total mass x 100 %

The relative amounts of the elements in a compound are expressed as the percent composition or the percent by mass of each element in the compound.

Determine the percent composition of potassium chromate, K_2CrO_4 :

K = ? % Cr = ? % <u>O = ? %</u> 100.0 %

The relative amounts of the elements in a compound are expressed as the percent composition or the percent by mass of each element in the compound.

Determine the percent composition of potassium chromate, K_2CrO_4 :

% element = mass of the element / total mass x 100 %

K = 2 x 39.1 g/mol = 78.2 g/mol

O = 4 x 16.0 g/mol = <u>64.0 g/mol</u> Molar Mass = 194.2 g/mol

Percentages must total 100%. The percent composition of any compound is always the same (law of definite proportions.)

The percent composition of potassium chromate, K₂CrO₄, is:

K = 40.3%Cr = 26.8% O = 32.9%100.0 %

Potassium chromate, K₂CrO₄

Note: 100% = 1The percentages can be set equal to "1" as follows: 0.403 + 0.268 + 0.329 = 1

A sample of a compound containing carbon and oxygen had a mass of 88 grams. Experimental procedures determined that 24 grams of the sample was carbon and 64 grams was oxygen. Find the % composition of each element.

A sample of a compound containing carbon and oxygen had a mass of 88 grams. Experimental procedures determined that 24 grams of the sample was carbon and 64 grams was oxygen. Find the % composition (*of each element*) of the compound.

% C = mass of C / Total Mass x 100% \rightarrow 24 g / 88 g x 100 % = 27% Carbon

% O = mass of O / Total Mass x 100% \rightarrow 64 g / 88 g x 100 % = 73% Oxygen

Note: The percentages can be set equal to "1" as follows:

0.27 g + 0.73 g = 1 g

... for every 1 g of sample, there is 0.27 g C & 0.73 g O

Calculating Percent Composition from Mass Data

A compound is formed when 9.03 g Mg combines completely with 3.48 g N. What is the percent composition of this compound?

Calculating Percent Composition from Mass Data

A compound is formed when 9.03 g Mg combines completely with 3.48 g N. What is the percent composition of this compound?

- 1. Find total mass 9.03 g Mg + 3.48 g N = 12.51 g of compound
- 2. Find % by mass

% Mg = mass of Mg / Total Mass x 100% \rightarrow 9.03 g / 12.51 g x 100 % = 72.2% Mg % N = mass of N / Total Mass x 100% \rightarrow 3.48 g / 12.51 g x 100 % = 27.8% N

Show the percentages of the elements adding up to 100% and 1.

Calculating Percent Composition from Mass Data

A compound is formed when 9.03 g Mg combines completely with 3.48 g N. What is the percent composition of this compound?

- 1. Find total mass 9.03 g Mg + 3.48 g N = 12.51 g of compound
- 2. Find % by mass

% Mg = mass of Mg / Total Mass x 100% \rightarrow 9.03 g / 12.51 g x 100 % = 72.2% Mg % N = mass of N / Total Mass x 100% \rightarrow 3.48 g / 12.51 g x 100 % = 27.8% N

NOTE: the percentages of the elements add up to 100% or 1.

72.2% + 27.8% = 100%

0.722 + 0.278 = 1

Determine the % composition of Sulfuric Acid

- What is the formula?
- Find GFM or GMM

Find percent composition

Determine the % composition of Sulfuric Acid $(H_2SO_4_{aq})$

Find GFM or GMM

STRATEGY

Н	2 x 1.00 g/mol	= 2.00 g/mol
S	1 x 32.1 g/mol	= 32.1 g/mol
0	4 x 16.0 g/mol	= <u>64.0 g/mol</u>
		= 98.1 g/mol

Find percent composition

- % H GAM/Total Mass \rightarrow 2.00 g / 98.1 g/mol = 0.0204 = 2 %
- % S GAM/Total Mass \rightarrow 32.1 g / 98.1 g/mol = 0.327 = 33 %
- % O GAM/Total Mass \rightarrow 64.0 g / 98.1 g/mol = 0.652 = 65 %

% by mass of element = $\frac{\text{mass of element}}{\text{mass of compound}} \times 100$

Calculating Percent Composition from a Formula

Calculate the percent composition of ethane (C_2H_6) .

Calculating Percent Composition from a Formula

Calculate the percent composition of ethane (C_2H_6) .

Find the molar mass of ethane (C_2H_6)

mass of C in 1 mol $C_2H_6 = 2 \text{ mol} \times 12.0 \text{ g/mol} = 24.0 \text{ g}$ mass of H in 1 mol $C_2H_6 = 6 \text{ mol} \times 1.00 \text{ g/mol} = 6.00 \text{ g}$ molar mass of $C_2H_6 = 24.0 \text{ g/mol} + 6.00 \text{ g/mol} = 30.0 \text{ g/mol}$

Find percent composition

- % C GAM/Total Mass \rightarrow 24.0 g / 30.0 g/mol = 0.80 = 80 %
- % H GAM/Total Mass \rightarrow 6.00 g / 30.0 g/mol = 0.20 = 20 %

Calculating Mass from Percent Composition

Calculate the mass of the elements in 350 g of ethane (C_2H_6) .

Calculate the mass of the elements in 350 g of ethane (C_2H_6) .

Rearrange % mass equation

% mass = mass of element / total mass

Mass of element = (% mass)(total mass)

Find percent composition

% C GAM/Total Mass \rightarrow 24.0 g / 30.0 g/mol = 0.80 = 80 %

% H GAM/Total Mass \rightarrow 6.00 g / 30.0 g/mol = 0.20 = 20 %

Find the mass of each element in 350 g of ethane (C_2H_6)

mass of C = 350 g x 80 % = 280 gmass of H = 350 g x 20 % = 70 g

Mole Ratios (Divide "moles" by "moles")

CaCl ₂	NO ₂
Ratio of subscripts =:	Ratio of subscripts =:
Mole ratio of Ca:Cl =:	Mole ratio of N:O =:
Ca ₃ (PO ₄) ₂	N ₂ O ₄
Ratio of subscripts =::	Ratio of subscripts = _:_
Mole ratio of Ca:P:O =::	_ Mole ratio of N:O = 2:4 =:_
• $C_6H_{12}O_6$	
Ratio of subscripts =::	EMPIRICAL → smallest
Mole ratio C:H:O =::	whole
	number ratio

Mole Ratios (Divide "moles" by "moles")

CaCl₂

Ratio of subscripts = 1:2 Mole ratio of Ca:Cl = 1:2

Ca₃(PO₄)₂
 Ratio of subscripts = 3:2:8
 Mole ratio of Ca:P:O = 3:2:8

C₆H₁₂O₆

Ratio of subscripts = 6:12:6Mole ratio C:H:O = 1:2:1 NO₂
Ratio of subscripts = 1:2
Mole ratio of N:O = 1:2
N₂O₄
Ratio of subscripts = 2:4 = 1:2
Mole ratio of N:O = 2:4 = 1:2
Both molecules are nitrous oxide

EMPIRICAL → smallest whole number ratio

A compound contains 11% hydrogen and 89% oxygen. What is its formula?

A compound contains 11% hydrogen and 89% oxygen. What is its formula?

Remember that percentage can be made into decimals equaling 1 g:

 $11 \% + 89 \% = 100 \% \rightarrow 0.11 g + 0.89 g = 1.0 g$

Find Moles using the grams:

H 0.11 g x 1 mol/1.00 g = 0.110 mol H

O 0.89 g x 1 mol/16.0 g = 0.0556 mol O

Find the Mole Ratio (divide moles by moles): law of definite proportions 0.110 mol / 0.0556 mol = 2:1

Since the mole ratio = 2:1, the formula is H_2O (water)

Done WITHOUT Decimals

A compound contains 11% hydrogen and 89% oxygen. What is its formula?

Percentage can be made into numbers equaling 100 g:

 $11 \% + 89 \% = 100 \% \rightarrow 11 g + 89 g = 100 g$

Find Moles using the grams:

- H 11 g x 1 mol/1.00 g = 11.0 mol H
- O 89 g x 1 mol/16.0 g = 5.56 mol O

Find the Mole Ratio (divide moles by moles): law of definite proportions 11.0 mol / 5.56 mol = 2:1

Since the mole ratio = 2:1, the formula is H_2O (water)

Empirical Formulas

- The empirical formula of a compound gives the lowest whole-number ratio of the atoms or moles of the elements in a compound.
- An empirical formula may or may not be the same as a molecular formula.
- For carbon dioxide, the empirical and molecular formulas are the same: CO_2 , both having mole ratios of 1:2.

For calcium sulfide the molecular formula is Ca_2S_2 , so the mole ratio is 2:2. The empirical formula of calcium sulfide is CaS since the simplest whole number mole ratio is 1:1.

Empirical Formulas

The figure below shows two compounds of carbon and hydrogen having the same empirical formula $(CH)_x$ but different molecular formulas.

Ethyne (C_2H_2) , also called acetylene, is a gas used in welders' torches.

Styrene (C_8H_8) is used in making polystyrene.

Empirical Formulas

Empirical formula (CH)_x can be included in a molecular formula to distinguish molecules:

$(CH)_2$

Ethyne (C_2H_2)

Styrene (C_8H_8)

Peroxide (H_2O_2)

STRATEGY

Determining Empirical Formulas

... the simplest mole ratio of elements in a compound

- Step 1 → find the number of moles of each element in the compound
- Step 2 → divide the # moles by the <u>smallest</u> # moles (from step 1)
- Step 3 → determine a whole # mole ratio

Ethanoic acid, methanal, and glucose all have the same empirical formula $-CH_2O$.

A compound composed of Nickel and fluorine contains 9.11 g Ni and 5.89 g F. What is the empirical formula of this compound?

Step 1 \rightarrow find the number of moles of each element in the compound

Step 2 \rightarrow divide the # moles by the <u>smallest</u> # moles (from step 1)

Step $3 \rightarrow$ determine a whole # mole ratio

A compound composed of Nickel and fluorine contains 9.11 g Ni and 5.89 g F. What is the empirical formula of this compound?

Step 1 \rightarrow find the number of moles of each element in the compound

9.11 g x 1 mol / 58.7 g Ni = 0.155 mol Ni 5.89 g x 1 mol / 19.0 g F = 0.310 mol F

Step 2 \rightarrow divide the # moles by the smallest # moles (from step 1) 0.155 mol / 0.155 mol = 1 0.310 mol / 0.155 mol = 2.01

Step 3 \rightarrow determine a whole # mole ratio ... law of definite proportions 1:2 NiF₂

Note: remember, the metal comes first in a formula while the non-metal is listed last

1,6 diaminohexane is used to make nylon. What is the empirical formula of this compound if its percent composition is 62.1 % C, 13.8 % H, and 24.1 % N?

1,6 diaminohexane is used to make nylon. What is the empirical formula of this compound if its percent composition is 62.1 % C, 13.8 % H, and 24.1 % N?

DONE WITH DECIMALS

Change % into grams: 62.1 % = .621 g C, 13.8% = 13.8 g H, etc.

Find the number of moles of each element in the compound

- 0.621 g x 1 mol / 12.0 g C = 0.0518 mol C
- 0.138 g x 1 mol / 1.00 g H = 0.138 mol H
- 0.241 g x 1 mol / 14.0 g N = 0.0172 mol N

Divide the # moles by the **smallest** # moles

- 0.0518 mol / 0.0172 mol = 3.01 C
- 0.138 mol / 0.0172 mol = 8.02 H
- 0.0172 mol / 0.0172 mol = 1.00 N

Determine a whole # mole ratio ... law of definite proportions

C:H:N 3:8:1 C_3H_8N

1,6 diaminohexane is used to make nylon. What is the empirical formula of this compound if its percent composition is 62.1 % C, 13.8 % H, and 24.1 % N?

DONE WITHOUT DECIMALS

Change % into grams: 62.1% = 62.1 g C, 13.8% = 13.8 g H, etc.

Find the number of moles of each element in the compound

62.1 g x 1 mol / 12.0 g C = 5.18 mol C

13.8 g x 1 mol / 1.00 g H = 13.8 mol H

24.1 g x 1 mol / 14.0 g N = 1.72 mol N

Divide the # moles by the smallest # moles

5.18 mol / 1.72 mol	= 3.01 C
13.8 mol / 1.72 mol	= 8.02 H
1.72 mol / 1.72 mol	= 1.00 N

Determine a whole # mole ratio ... law of definite proportions

C:H:N 3:8:1 C₃H₈N

Determining Molecular Formulas

The molecular formula of a compound is either the same as its experimentally determined empirical formula, or it is a simple whole-number multiple of its empirical formula.

- Step 1 → determine the molar mass of the empirical formula
- Step 2 → determine the mass ratio of the molecular formula / empirical formula
- Step 3 \rightarrow multiply subscripts by the mass ratio

Determining Molecular Formulas

- What is the molecular formula of a compound with the empirical formula CCIN and a molar mass of 184.5 g/mol?
- Step 1 \rightarrow determine the molar mass of the empirical formula

- Step 2 → determine the mass ratio of the molecular formula / empirical formula
- Step 3 \rightarrow multiply subscripts by the mass ratio

Determining Molecular Formulas

What is the molecular formula of a compound with the empirical formula CCIN and a molar mass of 184.5 g/mol?

Step 1 \rightarrow determine the molar mass of the empirical formula

C1 x 12.01 g/molMass Ratio:CI1 x 35.45 g/molMass Ratio:N1 x 14.01 g/mol184.5 g/mol= 3.001= 61.47 g/mol61.47 g/mol

Step 2 → determine the mass ratio of the molecular formula / empirical formula

Step 3 \rightarrow multiply subscripts by the mass ratio

 $C_1 C I_1 N_1 \times 3 = C_3 C I_3 N_3$

Calculate Empirical Formula from Percent Composition

A compound contains 75% carbon and 25% hydrogen by mass. What is the empirical formula for this compound?

A compound is 42% sodium, 19% phosphorus, and 39% oxygen by mass. What is the empirical formula of this compound?

Calculate Empirical Formula from Percent Composition

A compound contains 75% carbon and 25% hydrogen by mass. What is the empirical formula for this compound?

Change % into grams:

75% = 0.750 g C 25% = 0.250 g H

Find the number of moles:

0.750 g x 1 mol/12.0 g C = 0.0625 mol C 0.250 g x 1 mol/1.00 g H = 0.25 mol H

Divide by the **smallest** # moles:

0.0625 mol / 0.0625 mol = 1 C

0.25 mol / 0.0625 mol = 4 H

Determine a whole # mole ratio:

C:H 1:4 CH₄

A compound is 42% sodium, 19% phosphorus, and 39% oxygen by mass. What is the empirical formula of this compound?

Change % into grams: 0.19 g P 0.39 g O 0.42 g Na Find the number of moles: 0.420 g x 1 mol/23.0 g Na = 0.0183 mol Na 0.190 g x 1 mol/31.0 g P = 0.0061 mol P 0.390 g x 1 mol/16.0 g O = 0.0244 mol PDivide by the **smallest** # moles: 0.0183 mol / 0.0061 mol = 3 Na0.0061 mol / 0.0061 mol = 1 P0.0244 mol / 0.0061 mol = 4 ODetermine a whole # mole ratio:

Na:P:O 3:1:4 Na₃PO₄

TRY IT

Calculate Empirical Formula from Percent Composition (Done ANOTHER WAY)

A compound contains 75% carbon and 25% hydrogen by mass. What is the empirical formula for this compound?

Change % into grams:

75% = 75 g C 25% = 25 g H

Find the number of moles:

75 g x 1 mol/12.0 g C = 6.25 mol C 25 g x 1 mol/1.00 g H = 25 mol H

Divide by the **<u>smallest</u>** # moles:

62.5 mol / 6.25 mol = 1 C

25 mol / 6.25 mol = 4 H

Determine a whole # mole ratio:

C:H 1:4 CH₄

A compound is 42% sodium, 19% phosphorus, and 39% oxygen by mass. What is the empirical formula of this compound?

Change % into grams: 42% = 42 g Na 19% = 19 g P 39% = 39 g O Find the number of moles: 42 g x 1 mol/23.0 g Na = 1.83 mol Na 19 g x 1 mol/31.0 g P = 0.61 mol P39 g x 1 mol/16.0 g O = 2.44 mol PDivide by the **smallest** # moles: 1.83 mol / 0.61 mol = 3 Na0.61 mol / 0.61 mol = 1 P2.44 mol / 0.61 mol = 4 ODetermine a whole # mole ratio:

Na:P:O 3:1:4 Na₃PO₄

ation States

s-block

18 0

4.00260

Polyatomic Ions

Name	Formula	Name	Formula	
perPhosphate	(PO ₅) ⁻³	perCarbonate	$(CO_4)^{-2}$	
Phosphate	$(PO_4)^{-3}$	Carbonate	$(CO_3)^{-2}$	
Phosphite	$(PO_3)^{-3}$	Carbonite	$(CO_2)^{-2}$	
hypoPhosphite	$(PO_2)^{-3}$	hypocarbonite	(CO) ⁻²	
perChlorate	$(ClO_4)^{-1}$	perNitrate	$(NO_4)^-$	
Chlorate	$(ClO_3)^{-1}$	Nitrate	(NO_3)	
Chlorite	$(ClO_2)^{-1}$	Nitrite	$(NO_2)^-$	
hypoChlorite	(ClO) ⁻¹	Hyponitrite	(NO) ⁻	Ammonium
perSulfate	$(SO_5)^{-2}$	perChromate	$(CrO_5)^{-2}$	$(\mathrm{NH}_4)^{+1}$
Sulfate	$(SO_4)^{-2}$	Chromate	$(CrO_4)^{-2}$	
Sulfite	(SO ₃) ⁻²	Chromite	$(CrO_3)^{-2}$	
hyposulfite	(SO_2^{-2})	Hypochromite	$(CrO_2)^{-2}$	
Acetate	$(C_2H_3O_2)^{-1}$	Cyanide	(CN) ⁻¹	
Hydroxide	(OH) ⁻¹	Manganate	$(MnO_4)^{-2}$	