Name	Class	Date
------	-------	------

Chapter 16 Thermal Energy and Heat

Section 16.2 Heat and Thermodynamics

(pages 479-483)

This section discusses three kinds of thermal energy transfer and introduces the first, second, and third laws of thermodynamics.

Reading Strategy (page 479)

Building Vocabulary As you read this section, add definitions and examples to complete the table. For more information on this Reading Strategy, see the **Reading and Study Skills** in the **Skills and Reference Handbook** at the end of your textbook.

Transfer of Thermal Energy				
Definitions	Examples			
Conduction: transfer of thermal energy with no net transfer of matter	Frying pan handle heats up			
Convection: transfer of thermal energy when particles of a fluid move from one place to another	Hot air circulating in an oven			
Radiation: transfer of energy by waves moving through space	Heating coil of a stove glows			

Conduction (pages 479-480)

1. The transfer of thermal energy with no overall transfer of matter is

called <u>conduction</u>.

2. Is the following sentence true or false? Conduction is faster in metals than in other solids because metals have free electrons that transfer

thermal energy. _____true

- 3. Circle the letter of each sentence that is true about conduction.
 - (a.) Thermal energy is transferred without transfer of matter.
 - b. Conduction can occur between materials that are not touching.
 - (c.) In most solids, conduction takes place as particles vibrate in place.
- **4.** Complete the table about conduction.

Conduction					
Type of Material Quality of Conduction		Two Examples			
Thermal conductor	Conducts thermal energy well	Copper; aluminum			
Thermal insulator	Conducts thermal energy poorly	Wood; air			

Nar	ne		_ Class		Date
Cha	pter 16 Therr	nal Energy and H	Ieat		
Co	nvection (pa	nges 480–481)			
			rgy when pa	articles of a fluid	move from one
	place to anot	her is called $_$	convection	<u>.</u>	
6.				ternately heats u occurs. Circle the	up and cools e correct answer.
	air current	convection	n current	heat circulat	ion
Ra	diation (page	e 481)			
7.	The transfer	of energy by w	aves movin	g through space	is called
	radiatio	<u>.</u>			
8.	ition.				
(a. Energy is	transferred by	waves.		
	b. All objects	radiate energy	y.		
		nt of energy ra re increases.	diated from	an object decrea	ises as its
Th	ermodynan	niCS (pages 482	2–483)		
9.	Thermodyna and other for	mics is the stu ms of energy.	dy of conve	rsions between ₋	thermal energy
10.	Is the follow	ng sentence tr	ue or false? l	Energy cannot b	e created or
	destroyed, bi	ut it can be con	verted into	different forms.	true
11.	Circle the let	ter of the corre nics, when car	ct answer. A	according to the	
	a. only wher	you use a hea	t pump		
	b. only wher	you do work	on the syste	m	
	c. whenever	two objects to	uch each oth	er	
12.	Define waste	heat. Waste hea	at is thermal ene	ergy that is not conve	erted into work.
13.				Scientists have ceducing the temp	
	outside envii	conment to abs	olute zero	false	
14.					oled to absolute
	zero	false			