

Chapter 9 Chemical Names and Formulas Naming and Writing Formulas for Ionic Compounds Covalent Molecules Acids and Bases

Law of Definite Proportions Law of Multiple Proportions

Topics:

1. Chemical Names and Formulas

Objectives:

- 1. Explain how to determine the charges of monatomic ions.
- 2. Apply the rules for naming and writing formulas for compounds with polyatomic ions.
- 3. Determine the names and formulas of ionic and covalent compounds, of acids and bases.
- 4. Understand Law of Definite Proportions

Naming and Making Chemical Formulas

If the formula is provided, name the compound or molecule.

If the formula name is provided, make the formula. (add a second name if appropriate)

Naming and Making Chemical Formulas

If the formula is provided, name the compound or molecule.

Potassium nitride	K ⁺¹ ₃ N ⁻³
Potassium chromate	K ⁺¹ ₂ (CrO ₄) ⁻²
Ferric sulfide, Iron(III) sulfide, di-iron Trisulfide	Fe ⁺³ ₂ S ⁻² ₃
Barium acetate	Ba ⁺² (C ₂ H ₃ O ₂) ⁻¹ ₂
Zinc phosphate	Zn ⁺¹ ₃ (PO ₄) ⁻³ ₂
Sodium bromide	Na ⁺¹ Br ⁻¹
Cuprous chlorate, Copper(I) chlorate, monocopper monochlorate	Cu ⁺¹ (CIO ₃) ⁻¹
Nitrogen dioxide, Nitrogen(IV) oxide	N+4O-2 ₂
Mercury(I) bromide, Mercurous bromide, dimercury dibromide	Hg ⁺¹ ₂ Br ⁻¹ ₂
Hydrogen peroxide, dihydrogen dioxide	H ⁺¹ ₂ O ⁻¹ ₂
Potassium hydroxide	K ⁺¹ (OH) ⁻¹
Phosphorus TriFluoride	P ⁺³ F ⁻¹ ₃

What Is the Method for Naming Acids & Bases?

F

corrosive

Acids and Bases (overview of theory)

Acids:

- Increase concentration of H⁺ ions in aqueous (water) solution.
- May be ionic or covalent.
- Generally contain H atoms bonded to other atoms or to polyatomic ions.

Properties:

- Turn blue litmus paper red.
- Taste sour.

Bases:

- Increase concentration of (OH)⁻ ions in aqueous solution.
- Ionic bases contain OH⁻ in formula.

Properties:

- Turn red litmus paper blue.
- Feel slippery or soapy.

Naming Binary Acids

The simplest acids contain Hydrogen and we call these **binary** acids (example: HCI) which contains only 2 elements.

Acids donate an H+ ion in solution.

For Naming, use \rightarrow "hydro _____ ic acid"

- Start with hydro- to indicate H
- Add the root of the nonmetal
- Add -ic

Formula	Solid or Dry gas	Aqueous
HCI		
HBr		
HF		
H ₂ S		

Naming Binary Acids

The simplest acids contain Hydrogen and we call these **binary** acids (example: HCI) which contains only 2 elements

Acids donate an H+ ion in solution

For Naming, use \rightarrow "hydro _____ ic" acid (aq)

- Start with hydro- to indicate H
- Add the root of the nonmetal

• Add - <i>ic</i>	Formula	Solid or Dry gas	Aqueous
Remember "hydrogen" in	HCI	Hydrogen Chloride	Hydrochloric acid HCl aq
an acid does HBr		Hydrogen Bromide	Hydrobromic acid HBr aq
covalent	HF	Hydrogen Fluoride	Hydrofluoric acid HF aq
<i>molecule</i> <i>naming rules.</i>	H_2S	Hydrogen Sulfide	Hydrosulfuric acid H ₂ Saq

Naming Common Acids (non-binary)			
Name	Name (anhydrous)	Formula	
Sulfuric acid	Hydrogen Sulfate	H_2SO_4	
Nitric acid	Hydrogen Nitrate	HNO ₃	
Acetic acid (Vinegar)	Hydrogen Acetate	HC ₂ H ₃ O ₂	
Phosphoric acid	Hydrogen Phosphate	H ₃ PO ₄	
Carbonic acid	Hydrogen Carbonate	H ₂ CO ₃	

Many industrial processes, including steel and fertilizer manufacturing, use acids. Also, food and drink.

Naming Acids Containing Oxygen

- These molecules end in "-ate" or "-ite"
- Molecules are named based on the number of oxygens in the molecule
- Naming "oxyacids" when placed in water
 - The "-ate" is changed to "-ic" OR
 - the "-ite" is changed to "-ous"

	Solid	aqueous	In Water
H_2SO_4	Hydrogen Sulfate	$H_2SO_{4 (aq)}$	
H_2SO_3	Hydrogen Sulfite	$H_2SO_{3 (aq)}$	

Naming Acids Containing Oxygen

- These molecules end in "-ate" or "-ite"
- Molecules are named based on the number of oxygens in the molecule
- Naming "oxyacids" when placed in water
 - The "-ate" is changed to "-ic" OR
 - the "-ite" is changed to "-ous"

	Solid	aqueous	In Water
H_2SO_4	Hydrogen Sulfate	H ₂ SO _{4 (aq)}	Sulfuric Acid
H_2SO_3	Hydrogen Sulfite	$H_2SO_{3 (aq)}$	Sulfurous Acid

Sulfate Series

Dry or Gaseous State	Name	Aqueous State	Acid Name
H ₂ SO ₅		H ₂ SO _{5 (aq)}	
H ₂ SO ₄		H_2SO_4 (aq)	
H ₂ SO ₃		$H_2SO_{3(aq)}$	
H_2SO_2		$H_2SO_{2 (aq)}$	

Use the "-ate" acid as the <u>standard of comparison</u> for the number of oxygen atoms. E.g. Hydrogen Sulfate becomes Sulfuric Acid.

- One more oxygen atom changes the name to "per" (above)
- One less oxygen atom changes the name to "-ite"
- Two less oxygen atoms changes the name to "hypo" (under) ... "ite"

Sulfate Series

Dry or Gaseous State	Name	Aqueous State	Acid Name
H ₂ SO ₅	Hydrogen perSulfate	$H_2SO_{5 (aq)}$	Per Sulfuric Acid
H ₂ SO ₄	Hydrogen Sulfate	H ₂ SO _{4 (aq)}	Sulfuric Acid
H ₂ SO ₃	Hydrogen Sulfite	H ₂ SO _{3 (aq)}	Sulfurous Acid
H ₂ SO ₂	Hydrogen hypoSulfite	$H_2SO_{2 (aq)}$	Hyposulfurous Acid

Use the "<u>-ate</u>" acid as the <u>standard of comparison</u> for the number of oxygen atoms. E.g. Hydrogen Sulfate becomes Sulfuric Acid.

- One more oxygen atom changes the name to "per" (above)
- One less oxygen atom changes the name to "-ite"
- Two less oxygen atoms changes the name to "hypo" (under) ... "ite"

This convention works with any oxygen containing acids.

Ion Name	Formula	Ion Name	Formula
ammonium (uh moh' nee uhm)	NH_4^+	cyanide (sigh' uh nide)	CN
hydroxide (hye drox'ide)	OH-	carbonate (kar' bun ate)	CO32-
chlorate (klor'ate)	ClO ₃ -	chromate (krohm'ate)	CrO_4^{2-}
chlorite (klor' ite)	ClO ₂ -	dichromate (dye krohm'ate)	$Cr_2O_7^{2-}$
nitrate (nye' trate)	NO_3^-	sulfate (suhl' fate)	SO42-
nitrite (nye' trite)	NO_2^-	sulfite (suhl' fite)	SO32-
acetate (as' uh tate)	$C_2H_3O_2^-$	phosphate (fahs' fate)	PO43-

NO - NO ₂ - NO ₃ - Nitrate NO ₄ -	Addition In of another O	n water
---	--------------------------------	---------

The "-ate" is changed to "-ic" OR the "-ite" is changed to "-ous"

This convention works with any oxygen containing acids.

Ion Name	Formula	Ion Name	Formula
ammonium (uh moh' nee uhm)	NH_4^+	cyanide (sigh' uh nide)	CN
hydroxide (hye drox'ide)	OH	carbonate (kar' bun ate)	CO32-
chlorate (klor'ate)	ClO ₃ -	chromate (krohm'ate)	CrO_4^{2-}
chlorite (klor'ite)	ClO ₂ -	dichromate (dye krohm'ate)	$Cr_2O_7^{2-}$
nitrate (nye' trate)	NO ₃ -	sulfate (suhl' fate)	SO42-
nitrite (nye' trite)	NO_2^-	sulfite (suhl' fite)	SO32-
acetate (as' uh tate)	$C_2H_3O_2^-$	phosphate (fahs' fate)	PO43-

NO ⁻ *hyponitrite* NO₂⁻ Nitrite NO₃⁻ Nitrate NO₄⁻ *pernitr*ate

Addition of another

Hyponitrous acid Nitrous acid Nitric acid *Pernitric acid*

The "-ate" is changed to "-ic" OR the "-ite" is changed to "-ous"

Chlorate Series

Dry or Gaseous State	Name	Aqueous State	Name
HClO ₄		HClO _{4 (aq)}	
HClO ₃		HClO _{3 (aq)}	
HClO ₂		HClO _{2 (aq)}	
HClO		HClO _(aq)	

Phosphate Series

Dry or Gaseous State	Name	Aqueous State	Name
H ₃ PO ₅		H ₃ PO _{5 (aq)}	
H ₃ PO ₄		$H_3PO_{4(aq)}$	
H ₃ PO ₃		$H_3PO_{3(aq)}$	
H ₃ PO ₂		H ₃ PO _{2 (aq)}	

Chlorate Series

Dry or Gaseous State	Name	Aqueous State	Name
HClO ₄	Hydrogen perchlorate	HClO _{4 (aq)}	Perchloric Acid
HClO ₃	Hydrogen Chlorate	HClO _{3 (aq)}	Chloric Acid
HClO ₂	Hydrogen Chlorite	HClO _{2 (aq)}	Chlorous Acid
HClO	Hydrogen hypoChlorite	HClO _(aq)	HypoChlorous Acid

Phosphate Series

Dry or Gaseous State	Name	Aqueous State	Name
H ₃ PO ₅	Hydrogen Perphosphate	H ₃ PO _{5 (aq)}	Perphosphoric Acid
H ₃ PO ₄	Hydrogen Phosphate	$H_3PO_{4(aq)}$	Phosphoric Acid
H ₃ PO ₃	Hydrogen Phosphite	H ₃ PO _{3 (aq)}	Phosphorous Acid
H ₃ PO ₂	Hydrogen hypoPhosphite	$H_3PO_{2(aq)}$	HypoPhosphorous Acid

Polyatomic Ion Lewis Structures

Name the Acid or Give its Formula

HNO_{2 (aq)}

HI (aq)

Carbonic acid in carbonated beverages

Hydrofluoric acid

HCIO (aq)

HCIO_{4 (aq)}

HCN (aq) (cyanide)

Phosphoric acid in soft drinks, teeth whitener, preserving foods

Name the Acid or Give its Formula

HNO_{2 (aq)} nitrous acid HI (aq) hydroiodic acid HCIO_{4 (aq)} perchloric acid HCIO (aq) hypochlorous acid HCN (aq) (cyanide) hydrocyanic acid (treated as binary)

Carbonic acid in carbonated beverages H₂CO_{3 (aq)}

Hydrofluoric acid

 $\text{HF}_{(\text{aq})}$

Phosphoric acid in soft drinks, teeth whitener, preserving foods H_3PO_4 (aq)

Simple **bases** are ionic compounds which produce hydroxide ions (OH)[–] when dissolved in water (aq).

Bases are named in the same way as other ionic compounds \rightarrow the name of the cation is followed by the name of the anion.

Sodium hydroxide (NaOH) dissociates into sodium cations (Na⁺) and hydroxide anions (OH)⁻.

Formula	Base Name
NaOH aq	
KOH aq	
Ca(OH) ₂ aq	

Simple **bases** are ionic compounds which produce hydroxide ions (OH)[–] when dissolved in water.

Bases are named in the same way as other ionic compounds \rightarrow the name of the cation is followed by the name of the anion.

Sodium hydroxide (NaOH) dissociates into sodium cations (Na⁺) and hydroxide anions (OH)⁻.

Formula	Base Name
NaOH aq	Sodium hydroxide
KOH aq	Potassium hydroxide
Ca(OH) ₂ aq	Calcium hydroxide

To write the formula for a base:

- Write the symbol for the metal cation
- Then write the formula for the hydroxide ion.
- Then, balance the ionic charges just as you would for any ionic compound.

Write the formula and give the name for the base formed when Aluminum is dissolved in water:

To write the formula for a base:

- Write the symbol for the metal cation
- Then write the formula for the hydroxide ion.
- Then, balance the ionic charges just as you would for any ionic compound.

Write the formula and give the name for the base formed when Aluminum is dissolved in water:

Aluminum cation (Al³⁺) hydroxide anion (OH)-Al³⁺(OH)-Aluminum hydroxide: Al(OH)_{3 (aq)}

Proust's discovery:

- Samples of a compound have the same ratio of elements.
- CopperII carbonate was composed of 1 part carbon, 4 parts oxygen, and 5 parts copper by weight.
- Law of definite proportions: pure reactants always combine in the same proportion to produce a given substance

CopperII carbonate was composed of 1 part carbon, 4 parts oxygen, and 5 parts copper by weight. Prove definite proportions.

 CopperII carbonate was composed of 1 part carbon, 4 parts oxygen, and 5 parts copper by weight:

Cu⁺²(CO₃)⁻² total mass of 124 g/mol (see periodic table)

- Cu (~64 g/mol) Carbon (12 g/mol) Oxygen 3(16) = 48 g/mol
 - 64/124 = .5 12/124 = 0.1 48/124 = 0.4

0.1:0.4:0.5 = 1:4:5

 Law of definite proportions: Copper, carbon, and oxygen will always combine in the same proportion to produce Cu⁺²(CO₃)⁻².

Example Set Up:

Magnesium sulfide (MgS) is composed of magnesium cations and sulfide anions.

Use the periodic table and "molar" masses of the elements

Mg = ? S = ?

The Mg:S ratio of these masses is ?

Example Set Up:

Magnesium sulfide (MgS) is composed of magnesium cations and sulfide anions.

Use the periodic table and "molar" masses of the elements

Mg = 24.3 g/mol

S = 32.1 g/mol

The Mg:S ratio of these masses is 24.3/32.1 or **0.757:1**; this ratio never changes.

Example:

Magnesium sulfide (MgS) is composed of magnesium cations and sulfide anions.

When a 100.00 g sample of magnesium sulfide is decomposed into its elements, 43.13 g of magnesium and 56.87 g of sulfur result.

The Mg:S ratio of these masses is 43.13 / 56.87 or 0.758 : 1; this ratio never changes.

Magnesium sulfide obeys the Law of Definite Proportions, which states that in samples of any chemical compound, the masses of the elements are always in the same proportions.

When **ONE element** combines with another to form **more than one compound**, the **mass ratios** of the elements in the compounds are simple whole numbers of each other.

Law of Definite Proportions compares S to O Within EACH compound.

Sulfate series SO_4^{-2} ... SO_5^{-2} , SO_4^{-2} , SO_3^{-2} , SO_2^{-2}

Law of Multiple Proportions compares the amount of "Oxygen" **BETWEEN** each compound.

When one element combines with another to form more than one compound, the mass ratios of the elements in the compounds are simple whole numbers of each other.

Phosphate series $PO_4^{-3} \dots PO_5^{-3}$, PO_4^{-3} , PO_3^{-3} , PO_2^{-3} Chlorate series $CIO_3^{-1} \dots CIO_4^{-1}$, CIO_3^{-1} , CIO_2^{-1} , CIO_1^{-1} Nitrate series $NO_3^{-1} \dots NO_4^{-1}$, NO_3^{-1} , NO_2^{-1} , NO^{-1}

Consider the ratio of "Oxygen" **BETWEEN** each compound.

When two elements combine to form more than one compound, the <u>masses</u> of one element which combines with a fixed mass of the other element are in a <u>ratio of small whole numbers</u>.

Two familiar compounds:

water, H₂O and hydrogen peroxide H₂O₂,

are formed from the same two elements.

Although these compounds are formed by the elements hydrogen and oxygen, they have different physical and chemical properties.

Two familiar compounds, water, H_2O , and hydrogen peroxide H_2O_2 , are formed from the same two elements.

DEFINITE PROPORTIONS:

In hydrogen peroxide, H_2O_2 , ____ g of oxygen are present for ____ g of hydrogen. The mass ratio of oxygen to hydrogen is always ____. In water, H_2O , the mass ratio of oxygen to hydrogen is always _____ or ____.

MULTIPLE PROPORTIONS:

 $\underline{g} O$ (in H₂O₂ sample that has 1 g H)

 $\underline{g} O$ (in H₂O sample that has 1 g H)

Two familiar compounds, water, H_2O , and hydrogen peroxide H_2O_2 , are formed from the same two elements.

DEFINITE PROPORTIONS:

In hydrogen peroxide, H_2O_2 , 32.0 g of oxygen are present for 2.0 g of hydrogen. The mass ratio of oxygen to hydrogen is always **16:1**.

In water, H_2O , the mass ratio of oxygen to hydrogen is always 16:2 or 8:1.

MULTIPLE PROPORTIONS:

 $\frac{16 \text{ g O}(\text{in } \text{H}_2\text{O}_2 \text{ sample that has 1 g H})}{8 \text{ g O}(\text{in } \text{H}_2\text{O} \text{ sample that has 1 g H})} = \frac{16}{8} = \frac{2}{1} = \frac{2}{1} = \frac{2}{1}$

The small paper clip's mass is 0.5 g, the large 1.5 g Determine the Definite & Multiple Proportions:

The small paper clip's mass is 0.5 g, the large 1.5 g Determine the Definite & Multiple Proportions:

Definite proportions compares the mass of the elements WITHIN the same molecule

(small paper clip : large paper clip)

 Multiple proportions compares the mass of <u>same</u> <u>element</u> **BETWEEN** different molecules

(the SMALL paper clip in the first compound

to the SMALL paper clip in the other compounds)

 $Cu^{+1}Cl^{-1}$

Definite proportions compares the mass of the two elements WITHIN the same molecule

Copper(I) chloride [CuCl] and copper (II) chloride [CuCl₂] both contain chlorine. We can compare the mass of <u>copper</u> to <u>chlorine</u> WITHIN each molecule (<u>Definite Proportions</u>).

Multiple proportions compares the mass of same element <u>BETWEEN</u> different molecules

We can compare the mass of <u>chlorine</u> to <u>chlorine</u> BETWEEN each molecule (<u>Multiple Proportions</u>).

Fixed mass of Nitrogen	Empirical Formula	General Formula	Mass of Oxygen reacted with 1 g Nitrogen	Ratio of Oxygen to Oxygen
N ₂ O	N ₂ O	A ₂ B	? 16 g/28 g	?
N ₂ O ₂	NO	AB	? 32 g/28 g	?
N ₂ O ₃	N ₂ O ₃	A_2B_3	? 48 g/28 g	?
N ₂ O ₄	NO ₂	AB ₂	? 64 g/28 g	?
N ₂ O ₅	N_2O_5	A_2B_5	? 80 g/28 g	?

Chlorate series [give the multiple proportion of each series] perchlorate (ClO_4^-) , chlorate (ClO_3^-) , chlorite (ClO_2^-) , hypochlorite (ClO^-)

Phosphate series

perphosphate (PO₅⁻³), phosphate (PO₄⁻³), phosphite (PO₃⁻³), hypophosphite (PO₂⁻³)

Chromate series

perchromate (CrO₅⁻²), chromate (CrO₄⁻²), chromite (CrO₃⁻²), hypochromite (CrO₂⁻²)

Laws of Propo	Definite & N rtion Applica	Aultiple ation	Definite Proportions	Multiple Proportions
Fixed mass of Nitrogen	Empirical Formula	General Formula	Mass of Oxygen reacted with 1 g Nitrogen	Ratio of Oxygen to Oxygen
N ₂ O	N ₂ O	A ₂ B	0.5711 16g/28g	1
N ₂ O ₂	NO	AB	1.1422 32g/28g	2
N ₂ O ₃	N ₂ O ₃	A_2B_3	1.7134 48g/28g	3
N ₂ O ₄	NO ₂	AB ₂	2.2845 64g/28g	4
N ₂ O ₅	N ₂ O ₅	A_2B_5	2.8557 80g/28g	5

- Chlorate series [4:3:2:1]
- perchlorate (CIO₄⁻), chlorate (CIO₃⁻), chlorite (CIO₂⁻), hypochlorite (CIO⁻)
- Phosphate series [5:4:3:2]
- perphosphate (PO₅⁻³), phosphate (PO₄⁻³), phosphite (PO₃⁻³), hypophosphite (PO₂⁻³)
- Chromate series [5:4:3:2]
- perchromate (CrO₅⁻²), chromate (CrO₄⁻²), chromite (CrO₃⁻²), hypochromite (CrO₂⁻²)

Practice problem

TRY IT

Carbon (C) reacts with oxygen (O) to form two compounds.

Compound A contains 2.41 g of carbon for each 3.22 g of oxygen.

Compound B contains 6.71 g of carbon for each 17.9 g of oxygen.

Are these the same compound? What is the lowest wholenumber mass ratio of carbon that combines with a given mass of oxygen for compounds A and B?

Calculating Mass Ratios

Practice problem

Carbon (C) reacts with oxygen (O) to form two compounds. Compound A contains 2.41 g of carbon for each 3.22 g of oxygen. Compound B contains 6.71 g of carbon for each 17.9 g of oxygen.

First, calculate grams of carbon per gram of oxygen in compound A. (Definite Proportions)

2.41 g C	0.748 g C
3.22 g O	1.00 g O

Then, calculate grams of carbon per gram of oxygen in compound B. (Definite Proportions)

6.71 g C	0.375 g C
17.9 g O	= 1.00 g O

Practice problem

Since the definite proportion ratios are not the same, the two compounds are not the same. Compound A 0.748:1 C = 12 g/mol Compound B 0.375:1 O = 16 g/mol 12/16 = 0.748

Calculate the mass ratio to compare the two compounds.

$$\frac{0.748 \text{ g C}}{0.375 \text{ g O}} = \frac{1.99}{1} \approx \frac{2}{1}$$

Express the mass ratio as the lowest whole-number ratio. The mass ratio of carbon per gram of oxygen in the two compounds is 2:1. These molecules could be CO_2 and CO.

Are compound X and Y the same compound?

What is the mass ratio of element A in the two compounds?

Explain your answers.

Are compound X and Y the same compound?

What is the mass ratio of element A in the two compounds?

Explain your answers.

DEFINITE PROPORTIONS:

Since element B is the same (2 g) in both compounds, we can focus on element A to answer this question.

Mass ratio of elements (A:B) \rightarrow

10 g / 2 g = 5 : 1 in compound X, but

5 g / 2 g = 2.5 : 1 in compound Y,

showing that "X" and "Y" are DIFFERENT compounds.

Are compound X and Y the same compound?

What is the mass ratio of element A in the two compounds?

Explain your answers.

10 g / 2 g = 5 : 1 in compound X,

5 g / 2 g = 2.5 : 1 in compound Y

MULTIPLE PROPORTIONS:

 $\frac{5 \text{ g O "A" (in "X" sample that has 1 g B)}}{2.5 \text{ g "A" (in "Y" sample that has 1 g B)}} = \frac{5}{2.5} = \frac{2}{1} = 2:1$

Compound $X \rightarrow A_2B$ Compound $Y \rightarrow AB$

Two compounds contain hydrogen and oxygen. Compound 1 contains 2 grams of hydrogen and 16 grams of oxygen. Compound 2 contains 4 grams of hydrogen and 64 grams of oxygen. Are these compounds the same? If not, what are they? [Show the laws of definite and multiple proportions.]

Two compounds contain hydrogen and oxygen. Compound 1 contains 2 grams of hydrogen and 16 grams of oxygen. Compound 2 contains 4 grams of hydrogen and 64 grams of oxygen. Are these compounds the same? If not, what are they? [Show the laws of definite and multiple proportions.]

DEFINITE PROPORTIONS:

Compound 1

Compound 2

Hydrogen : Oxygen = 4 g : 64 g = **1:16**

Two compounds contain hydrogen and oxygen. Compound 1 contains 2 grams of hydrogen and 16 grams of oxygen. Compound 2 contains 4 grams of hydrogen and 64 grams of oxygen. Are these compounds the same? If not, what are they? [Show the laws of definite and multiple proportions.]

MULTIPLE PROPORTIONS:

 $\frac{16 \text{ g O (per 1 g H)}}{8 \text{ g O (per 1 g H)}} = \frac{16}{8} = \frac{2}{1} = 2:1$

The ratio of the mass of oxygen in the two compounds is exactly 2:1 meaning that one molecule has 2 times the oxygen by mass. This is Multiple Proportions.

 H_2O and H_2O_2

ation States

s-block

18 0

4.00260

	IONIZATION ENERGIES AND ELECTRONEGATIVITIES														
1	1													1	8
н	$\begin{array}{c c} 313\\ H\\ 2.2\\ \end{array} \qquad First Ionization Energy (kcal/mol of atoms)\\ Electronegativity*\\ 2 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ \end{array}$								He	567					
Li	125 1.0	Be	215 1.5	в	191 2.0	с	260 2.6	N	336 3.1	0	314 3.5	F	402 4.0	Ne	497
Na	119 0.9	Mg	176 1.2	AI	138	Si	188 1.9	Р	242 2.2	s	239 2.6	Cl	300 3.2	Ar	363
к	100 0.8	Ca	141 1.0	Ga	138 1.6	Ge	182 1.9	As	226 2.0	Se	225 2.5	Br	273 2.9	Kr	323
Rb	96 0.8	Sr	131 1.0	In	133 1.7	Sn	169 1.8	Sb	199 2.1	Te	208 2.3	I	241 2.7	Xe	280
Cs	90 0.7	Ba	120 0.9	TI	141 1.8	РЬ	171 1.8	Bi	168 1.9	Ро	194 2.0	At	2.2	Rn	248
Fr	0.7	Ra	122	* Ar	bitrar	y sca	ile ba	sed o	on fluo	orine	= 4.	0			

I

....

Polyatomic Ions

Name	Formula	Name	Formula	
perPhosphate	$(PO_5)^{-3}$	perCarbonate	$(CO_4)^{-2}$	
Phosphate	$(PO_4)^{-3}$	Carbonate	$(CO_3)^{-2}$	
Phosphite	$(PO_3)^{-3}$	Carbonite	$(CO_2)^{-2}$	
hypoPhosphite	$(PO_2)^{-3}$	hypocarbonite	(CO) ⁻²	
perChlorate	$(ClO_4)^{-1}$	perNitrate	$(NO_4)^-$	
Chlorate	$(ClO_3)^{-1}$	Nitrate	(NO_3)	
Chlorite	$(ClO_2)^{-1}$	Nitrite	(NO ₂) ⁻	
hypoChlorite	(ClO) ⁻¹	Hyponitrite	(NO) ⁻	Ammonium
perSulfate	$(SO_5)^{-2}$	perChromate	$(CrO_5)^{-2}$	$(\mathrm{NH}_4)^{+1}$
Sulfate	$(SO_4)^{-2}$	Chromate	$(CrO_4)^{-2}$	
Sulfite	(SO ₃) ⁻²	Chromite	$(CrO_3)^{-2}$	
hyposulfite	(SO_2^{-2})	Hypochromite	$(CrO_2)^{-2}$	
Acetate	$(C_2H_3O_2)^{-1}$	Cyanide	(CN) ⁻¹	
Hydroxide	(OH) ⁻¹	Manganate	$(MnO_4)^{-2}$	

