The Atom

Atom is the smallest particle of an element that has the same properties as the element.

The atom can be divided into two parts:

- Nucleus: Central portion of the atom
- Orbitals: Regions surrounding the nucleus

The Atom

Atom is the smallest particle of an element that has the same properties as the element.

The atom can be divided into two parts:

- Nucleus: Central portion of the atom
- Orbitals: Regions surrounding the nucleus

Charged Particles in the Atom

The atom is made of three particles: protons, electrons, and neutrons.

Protons are positively charged.

Electrons are negatively charged.

Neutrons are not charged.

Different elements have different particle counts and arrangements

HELIUM ATOM

Different elements have different particle counts and arrangements

Determine the Locations of Subatomic Particles

Type the name of the location of each particle.

Particle	Charge	Location	~Mass	A
?	+1	?	?	
?	0	?	?	
?	-1	?	?	

Determine the Locations of Subatomic Particles

Particle	Charge	Location	Approximate mass (amu)
Proton	+1	Nucleus	1
Neutron	0	Nucleus	1
Electron	-1	Orbitals	0

What is the structure of the atom?

How do we distinguish atoms of different elements?

Atomic number

Atomic number (Z)

- Number of protons in an atom
- Differs for each element

Atomic number

Atomic number (Z)

- Number of protons in an atom
- Differs for each element

Every atom of a given element has the same atomic number, and atomic number can be used to identify an element.

Mass number (A)

- Total number of protons
 + neutrons
- Usually varies from atom to atom
- Aluminum-27
 - Al-27
 - 27AI

Mass number (A)

- Total number of protons
 + neutrons
- Usually varies from atom to atom

Aluminum-27

- Al-27
- ²⁷AI

All atoms of an element have the same atomic number, but atoms of the same element can have different mass numbers.

Mass number

Atomic number

Mass number Life of the second secon

"Nuclear Symbols"

"Nuclear Symbols"

In a neutral atom

number of electrons = number of protons

4. 3 Distinguishing Among Atoms

Determining the Composition of an Atom

What is the atomic number (Z) and atomic mass (A) for each element? How many protons, electrons, and neutrons are in each atom?

$${}^{9}_{4}$$
Be ${}^{20}_{10}$ Ne ${}^{23}_{11}$ Na

Determining the Composition of an Atom

How many protons, electrons, and neutrons are in each atom?

$${}^{9}_{4}$$
 Be ${}^{20}_{10}$ Ne ${}^{23}_{11}$ Na

Use the definitions of atomic number and mass number to calculate the numbers of protons, electrons, and neutrons.

Beryllium (Be)Neon (Ne)Sodium (Na)atomic number = 4atomic number = 10atomic number = 11mass number = 9mass number = 20mass number = 23Be has 4 protons, 5 neutrons, and 4 electronsNe has 10 protons, 10 neutrons, and 10 electronsNa has 11 protons, 12 neutrons, and 11 electrons

Η

TRY IT

are used by scientist as a standard way to represent elements, showing both the **atomic** and **mass numbers** [*Which is which?*]

Hydrogen has ? proton, ? neutrons, and ? electron

Nuclear symbolsare used by scientist as a standard way to represent
elements, showing both the atomic and mass
numbers

mass number

atomic #

Hydrogen has 1 proton, 0 neutrons, and 1 electron

are used by scientist as a standard way to represent elements, showing both the **atomic** and **mass numbers** [*Which is which?*]

Nitrogen has ? protons, ? neutrons, and ? electrons

are used by scientist as a standard way to represent elements, showing both the atomic and mass numbers

Nitrogen has 7 protons, 7 neutrons, and 7 electrons

are used by scientist as a standard way to represent elements, showing both the **atomic** and **mass numbers** [*Which is which?*]

> 56 Fe 26

Iron has ? protons, ? neutrons, and ? electrons

are used by scientist as a standard way to represent elements, showing both the atomic and mass numbers

mass number

Fe 26

56

atomic #

Iron has 26 protons, 30 neutrons, and 26 electrons

F. DAVIES

IArtificial

Radio Active

4. 3 Distinguishing Among Atoms Isotopes

Sotopes are atoms that have the same number of protons but different numbers of neutrons. *Therefore, they have the same chemical properties.*

Neon-20, neon-21, and neon 22 are isotopes of neon.

4. 3 Distinguishing Among Atoms Isotopes

Sotopes are atoms that have the same number of protons but different numbers of neutrons. *Therefore, they have the same chemical properties.*

Neon-20, neon-21, and neon 22 are isotopes of neon.

Isotopes of Neutral Atoms

- Atoms of the same element with different mass numbers.
 - Number of protons are the same
 - Number of electrons are the same
 - Number of neutrons are different

Isotope	Ζ	n	A
Sn-112	50	62	112
Sn-114	50	64	114
Sn-115	50	65	115
Sn-116	50	66	116
Sn-117	50	67	117
Sn-118	50	68	118
Sn-119	50	69	119

An **atomic mass unit (amu)** is defined as onetwelfth of the mass of a carbon-12 atom.

This isotope of carbon has been assigned a mass of exactly 12 atomic mass units.

In nature, most elements occur as a mixture of two or more isotopes.

Each isotope of an element has a fixed mass and a natural percent abundance.

An **atomic mass unit (amu)** is defined as one-

twelfth of the mass of a carbon-12 atom.

This isotope of carbon has been assigned a mass of exactly 12 atomic mass units. 1°

In nature, most elements occur as a mixture of two or more isotopes.

Each isotope of an element has a fixed mass and a natural percent abundance.

4. 3 Distinguishing Among Atoms

Atomic Mass

Natural Percent Abundance of Stable Isotopes of Some Elements							
Name	Symbol	Natural percent abundance	Mass (amu)	Atomic mass			
	1 1 H	99.985	1.0078				
Hydrogen	$^{2}_{1}$ H	0.015	2.0141	1.0079			
	³ ₁ H	negligible	3.0160				
Holium	³ ₂ He	0.0001	3.0160	4 0000			
пенит	⁴ ₂ He	99.9999	4.0026	4.0026			
Carbon	¹² C	98.89	12.000	42.044			
Carbon	¹³ C	1.11	13.003	12.011			
	¹⁶ 0	99.759	15.995				
Oxygen	¹⁷ O	0.037	16.995	15.999			
	¹⁸ O	0.204	17.999				
Chloring	³⁵ CI	75.77	34.969	25 452			
Chiorine	³⁷ CI	24.23	36.966	33.433			

Atomic Mass

Chlorine exists as chlorine-35 and chlorine-37.

Chlorine's atomic mass on the Periodic Table is 35.453 amu. (*Notice is it not exactly in-between*.)

Which isotope is more abundant?

4. 3 Distinguishing Among Atoms

Atomic Mass

In nature there is 76% CI-35 than 24% CI-37, therefore, the atomic mass of chlorine, 35.453 amu, is closer to 35 than to 37.

Weighted Average Mass of a Chlorine Atom

Calculating Average Atomic Mass

The **average atomic mass** is the weighted average mass of all isotopes of an element.

Abundance of aluminum isotopes:

- 100% is from AI-27
- Therefore, no isotopes
- AI-26 is radioactive (not natural)

Average Atomic Mass

Abundance of silicon isotopes:

- 92.2297% is from Si-28
- 4.6832% is from Si-29
- 3.0872% is from Si-30

How do you arrive at a mass of 28.09?

The weighted average mass reflects both the mass and the relative abundance (%) of the isotopes as they occur in nature.

- Multiply the mass of each isotope by its natural abundance and add the products.
- 92.2297% (28) + 4.6832% (29) + 3.0872% (30) = **OR**

0.9223(28) + 0.0468(29) + 0.03087(30) = 28.09

25.82 + 1.36 + 0.93

14 Si Silicon 28.09

Atomic Mass

Carbon has two stable isotopes: carbon-12, natural abundance 98.89%, and carbon-13, natural abundance 1.11%.

What is the Average Atomic Mass of C-12?

Atomic Mass

Carbon has two stable isotopes: carbon-12, natural abundance 98.89%, and carbon-13, natural abundance 1.11%.

- The mass of carbon-12 is 12.000 amu; The mass of carbon-13 is 13.003 amu.
- The atomic mass of carbon is calculated as follows:
- = (12.000 amu x 0.9889) + 13.003 amu x 0.0111)
 = (11.867 amu) + (0.144 amu)
 = 12.011 amu

