This TWO PAGE reference sheet has been made available to you for use on assessments (automated and written). However, you may NOT add notes or other information to this document.

PV = nRT	$\mathbf{P}_{1}\mathbf{V}_{1} / \mathbf{T}_{1} = \mathbf{P}_{2}\mathbf{V}_{2} / \mathbf{T}_{2}$	$P_{Total} =$	$P_{Total} = P_1 + P_2 + P_3 + \dots$		
$S_1 / P_1 = S_2 / P_2$	M = mol solute / L solution $m = mol solution$		l solute / kg so	solute / kg solvent	
$\Delta T_f = k_f \ x \ m \ \dots$ include mole factor	$\Delta T_b = k_b \ x \ m \ \dots$ include mole factor	$\mathbf{M}_1\mathbf{V}_1$ =	$M_1V_1 = M_2V_2 \dots$ include mole factor		
$q = mc\Delta T$	$\Delta T~=~T_{Final}~-~T_{Initial}$	$T = T_{Final} - T_{Initial}$ $C_{water} = 4.18 J/(g^{-0}C) = 1 cal$		$= 1 \text{ cal/ g} \cdot {}^{0}\text{C}$	
$q=m\Delta H_{\rm f} ~~q=m\Delta H_{\rm v}$	$\Delta H = \sum \Delta H_{\text{products}} - \sum \Delta H_{\text{react}}$	ants			
$\Delta H^0 = \text{sum of } [(\Delta H_f^0 \text{ of products}) \times (\text{mol of products})] - \text{sum of } [(\Delta H_f^0 \text{ of reactants}) \times (\text{mol of reactants})]$					
% volume = volume solute/volume solution x 100% % mass = mass solute/mass solution x 100%					
% yield = actual yield/theoretical yield x 100% N_{A}					
$aA + bB \rightarrow cC + dD \qquad K_{eq} = [Products]^{p} / [Reactants]^{r}$ $K_{eq} = [C]^{c} \times [D]^{d} / [A]^{a} \times [B]^{b} \qquad K_{sp} = [C]^{c} \times [D]^{d}$ $\Delta G = \Delta H - T\Delta S \qquad \Delta G_{rxn} = \sum \Delta G_{products} - \sum \Delta G_{reactants} \qquad \Delta S_{rxn} = \sum \Delta S_{products} - \sum \Delta S_{reactants}$					
$K_{w} = [H^{+}][OH^{-}] = 1 \times 10^{-14} \text{ at } 25 \text{ °C}$ pH + pOH = 14 $pH = -\log_{10} [H^{+}] pOH = -\log_{10} [(OH)^{-}]$ $Orid + 2 M^{0} \rightarrow 2 M^{+1} + 2 \text{ a} \qquad \text{Pad} + X^{0} + 2 \text{ a} \rightarrow X^{-2}$					
$E^{0}_{\text{cell}} = E^{0}_{\text{oxid}} +$	E^0_{red}	Molar Volume 22.4 L		Molar Mass g/mol	

Chemistry

Law of Definite (fixed) proportions: mass of element 1: mass of element 2 in a compound is constant

Law of Conservation of Mass: the sum of the mass(es) of the reactant(s) equals the sum of the mass(es) of the product(s).

Factor Labelling: equalities become conversion factors (e.g. $1 \text{ cm}^3 = 1 \text{ ml} \rightarrow 1 \text{ cm}^3 / 1 \text{ ml}$ or $1 \text{ ml} / 1 \text{ cm}^3$) (e.g. $1 \text{ atm} = 101.3 \text{ kPa} \rightarrow 1 \text{ atm} / 101.3 \text{ kPa}$ or 101.3 kPa / 1 atm)

% error = |(Accepted - Experimental)|/Accepted x 100%

Relative Abundance: Sum of the (% abundance x Atomic mass) of each isotope = 100 %

Density = mass/volume E = hv $h = 6.626 \times 10^{-34} J \cdot s$ C = K - 273 C = K - 273 K = C + 273 $E = hc/\lambda \rightarrow E = hv$ combined with $v = c/\lambda$ $c = 2.998 \times 10^8 m/s$

"AGES"

- $A \rightarrow$ What is the problem ASKING for? [Highlight this in the question. This is the destination.]
- $G \rightarrow$ What are you GIVEN (information)? [Label all amounts/variables given. This is the starting point.]
- $E \rightarrow$ What EQUATION should be used? [Write the equation/formula needed. This is the map.]
- $S \rightarrow SOLVE$ the problem by plugging in measurements with units. Does it makes SENSE?