Chapter 8 Solutions, Acids, and Bases

Section 8.1 Formation of Solutions

(pages 228-234)

This section explains the parts of a solution, the processes that occur when compounds dissolve, and how the properties of a solution compare with those of its solvent and solute.

Reading Strategy (page 228)

Comparing and Contrasting Contrast dissociation and ionization by listing the ways they differ in the Venn diagram below. For more information on this reading strategy, see the **Reading and Study Skills** in the **Skills and Reference Handbook** at the end of your textbook.

Dissolving (page 229)

- 1. Define a solution. A solution is a homogenous mixture of two or more substances.
- **2.** Circle the letter that identifies a substance whose particles are dissolved in a solution.
 - a. solvent

(b.) solute

c. solid

- d. ion
- **3.** Circle the letter that identifies the solvent in air.
 - a. oxygen

b. carbon dioxide

(c.) nitrogen

- d. argon
- **4.** The process in which an ionic compound separates into ions as it dissolves is called <u>dissociation</u>.
- **5.** The process in which particles dissolve by breaking apart and scattering is called <u>dispersion</u>.
- **6.** A(n) ______ is transferred from each HCl molecule to a water molecule when hydrogen chloride gas dissolves in water.
- 7. Is the following sentence true or false? Dissolving by ionization is a physical change. ________

Name		Class	Dat	te
Chapter 8	Solutions, Acids, a	and Bases		
Properties of Liquid Solutions (page 231)				
8. What physical properties of a solution can differ from those of its solute and solvent?				
	Conductivity			
	Freezing point			
	Boiling point			
 Compare the conductivities of solid sodium chloride and saltwater. Solid sodium chloride is a poor conductor of electric current. However, when you 				
dissolve	sodium chloride in water	r, it becomes a good cond	luctor of electric currer	nt.
10. Circle t	he letters that identi	fy what happens to v	vater as it freezes.	
a. The water molecules become more organized.				
b. The water molecules become more disorganized.				
c. The water molecules ionize.				
d.The	water molecules arra	ange themselves in a	hexagonal pattern	
Heat of Solution (page 232)				
11. Dissolv releases		de in water is a(n)	exothermic	_ process, as it
12. Dissolv absorbs		ate in water is a(n) _	endothermic	_ process, as it
among		ue or false? Breaking the attractions amon se		
14. Describ	e heat of solution. 🗓	he heat of solution is the	difference between the	e energy required
to break	the attractions among so	olute particles and the attr	ractions among solven	t particles, and
the energ	y released as attractions	s form between solute and	d solvent particles.	
Factors Affecting Rates of Dissolving (page 234)				
15. How an	e rates of dissolving	similar to rates of ch	nemical reactions?	
	O	es vary with the condition		nge occurs.
16. Why does powdered sugar dissolve in water faster than granulated sugar? Powdered sugar has more surface area per unit mass than granulated sugar, so				
collisions between solute and solvent particles can occur at a greater rate.				
17. Heating a solvent the energy of its particles, making them move faster on average, and the rate at which a solid solute can dissolve in the solvent.				
18. Explain how stirring or shaking a mixture of powdered detergent and water can affect the rate of dissolving. Stirring or shaking a solution that contains a solid solute moves				

between the solute and solvent particles.

dissolved particles away from the surface of the solid. It also causes more frequent collisions