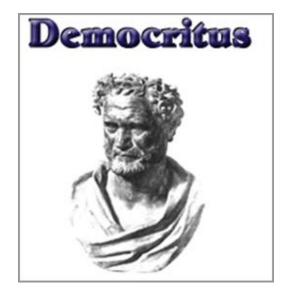

Chapter 4

THE STREET

F

1

Focus Questions


- Explain Atomic History from specific scientists perspectives (Democritus, Dalton, Thomson, Chadwick, Bohr, Rutherford).
- 2. Understand atomic structure (atomic number, atomic mass, and subatomic particles) and be able to define and draw all components. Draw a nuclear symbol for an element.
- 3. Explain what makes elements unique in properties (e.g. atomic number, mass, valence) and distinguish isotopes.

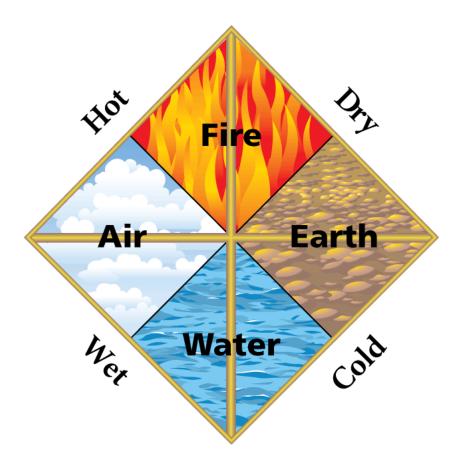
Early Models of the Atom

Democritus

Greek philosopher (460 – 370 BC) **Coined the term "Atom"**

"Matter consists of discrete, indivisible particles"

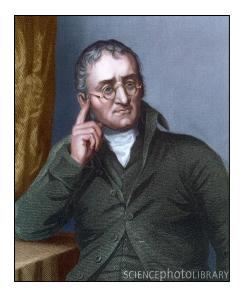
Democritus held a very general theory with <u>no</u> <u>experimental evidence</u>


Democritus' ideas were rejected by Plato & Aristotle (*fathers of <u>philosophy</u> and <u>ancient "scientific thinking</u>"*) ... & therefore, set aside

Ancient Greek Models of Atoms

Aristotle, a philosopher, thought that all substances were made of only four elements—earth, air, fire, and water.

For many centuries, most people accepted Aristotle's views on the structure of matter.


By the 1800s, scientists had enough experimental data to support an atomic model.

John Dalton 1766-1844

Dalton's Atomic Theory (1808)

- 1. All elements are composed of extremely small, INDIVISIBLE particles called "atoms."
- 2. All atoms of the same element have the same chemical properties. Atoms of different elements have different properties.

3. Compounds contain atoms of more than one element.

4. In a particular compound, atoms of different elements always combine in the same way.

Dalton's Atomic Theory

When magnesium burns, it combines with oxygen.

In magnesium oxide, the ratio of the mass of magnesium to the mass of oxygen is always about 3:2.

Magnesium dioxide has a fixed composition.

A theory must explain the data from many experiments. Over time, scientists found that not all of Dalton's ideas about atoms were completely correct.

Acrylic Tape

Watch the "Electrostatic Force" video on Study Place (complete the worksheet).

http://somup.com/cF6elPnVza (2:59)

Take TWO separate pieces of acrylic tape ~ 7.5 cm long (3 inches).

Hold them "back" to "back" so the NON sticky sides are facing each other.

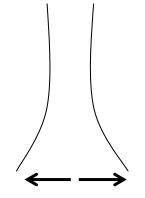
Bring them together slowly and observe.

Continue watching the video "Electrostatic Force" on Study Place (complete the worksheet).

NOW, take TWO other separate pieces of acrylic tape ~ 7.5 cm long (3 inches).

Hold them by the ends and place one on top of the other on your table so that one sticks to the table & the other sticks to the NON sticky side of the one on the table.

Pull the pieces off the table. Pull them apart and then bring them together slowly "back" to "back" & observe.



WHY?

In the first case you should have noticed "attraction"

In the second case, "Repulsion"

Continue with the last activities on the "Electrostatic Force" worksheet.

Watch the Van der Graaf machine video and consider what causes what you observe.

http://somup.com/cFQ22DVSKM Light, sparks, pie tin, Styrofoam, toy (1:15)

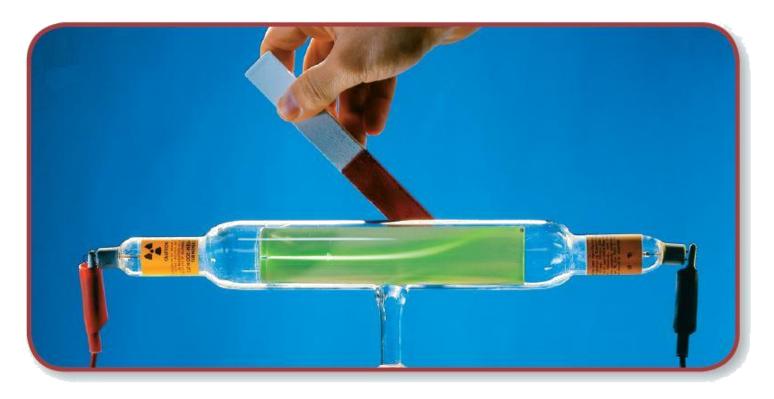
Electrostatic Forces Worksheet Conclusions

2 Structure of the Atom

Historical Overview

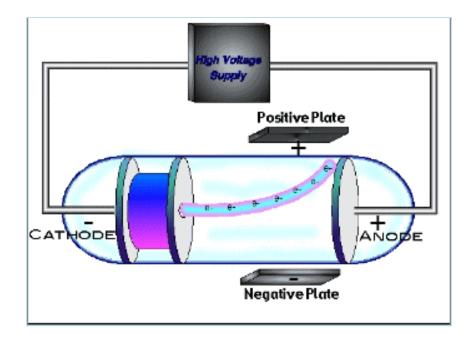
Benjamin Franklin

Learned from experiments with thunderstorms, that lightning is a flow of electrical energy through the atmosphere.



He arbitrarily decided that there must be "charges" ... and called them charge "A" and charge "B"

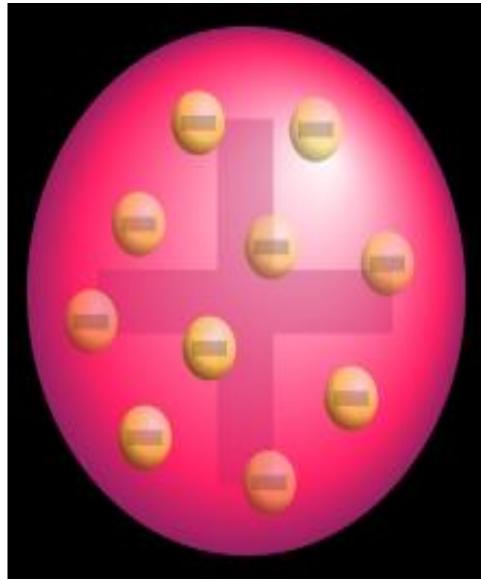
Electrons


A cathode ray can also be deflected by a magnet.

http://somup.com/cF6eVJnVy6 (1:07)

In 1897, JJ Thomson got the same result as Crookes with any gas he used, which contradicted Dalton's assumption that all atoms are indivisible.

He theorized the existence of a particle common to all atoms \rightarrow using the charged plates on either side of the tube, he showed the particle was negatively charged.

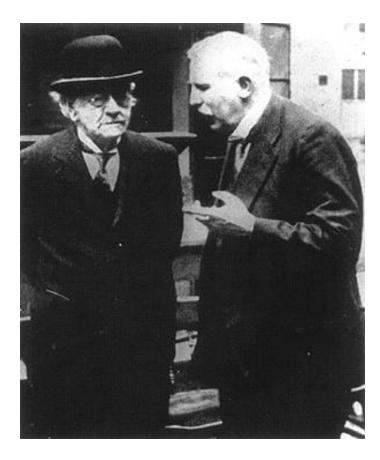


The Plum Pudding Model

2 Structure of the Atom

Thomson's results led to the proposal of a new atomic model, the plum pudding model.

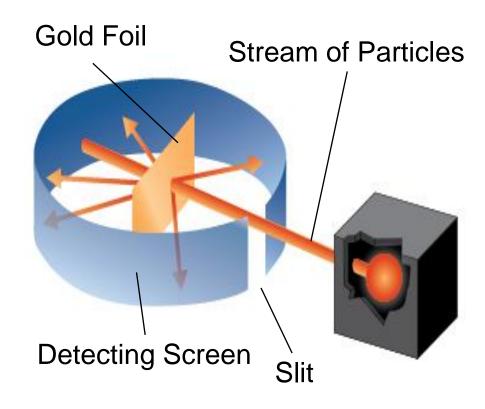
- Electrons floating in a sea of positive charges.
- Modification of Dalton's model of a solid, indivisible sphere ... atoms are subDIVIDED.
- Recognition of the existence of electrons and the neutrality of the whole atom.



Testing the Plum Pudding Model

Ernest Rutherford (*right*) developed an experiment to test the plum pudding model of JJ Thomson (*left*).

http://somup.com/cF6eVsnVyD Empty space (0:48)


http://somup.com/cF6eVMnVyb Rutherford (0:47)

Rutherford's Experiment

(1871–1937)

- He shot alpha particles (+) at a thin sheet of gold foil.
- Reflected particles are detected at various angles.

Rutherford's Results: Discovery of the Nucleus

- Most particles pass straight through gold foil (99%)
- A few particles deflected at <u>very large angles</u> ???

Conclusions:

2

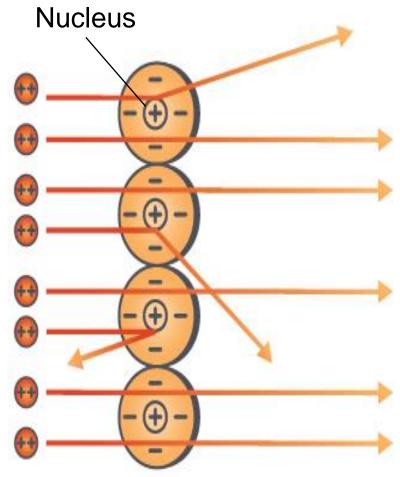


Diagram is not drawn to scale

Rutherford's Results: Discovery of the Nucleus

- Most particles pass straight through gold foil (99%)
- A few particles deflected at <u>very large angles</u> ???

Conclusions:

- Atom: mostly empty space
- Positive charge is concentrated in small, central region (nucleus)
- Volume of nucleus: small; mass: large

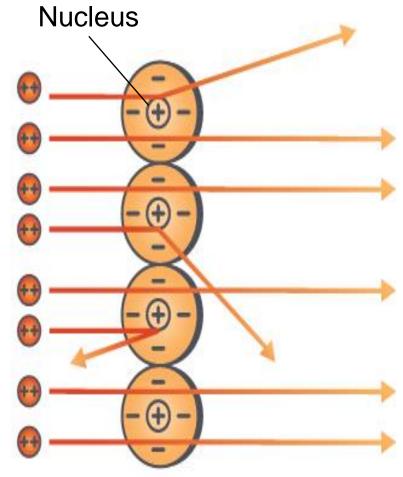
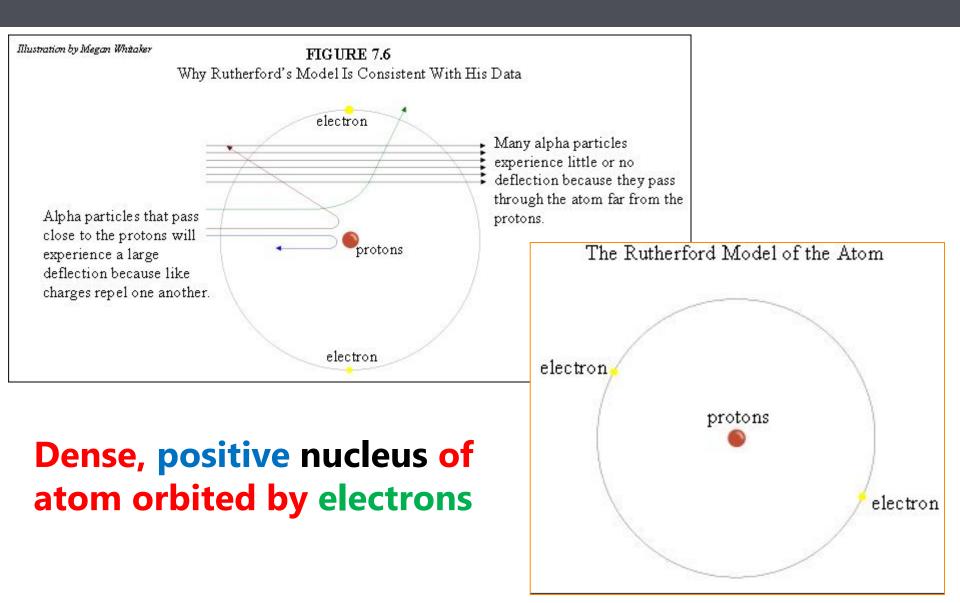
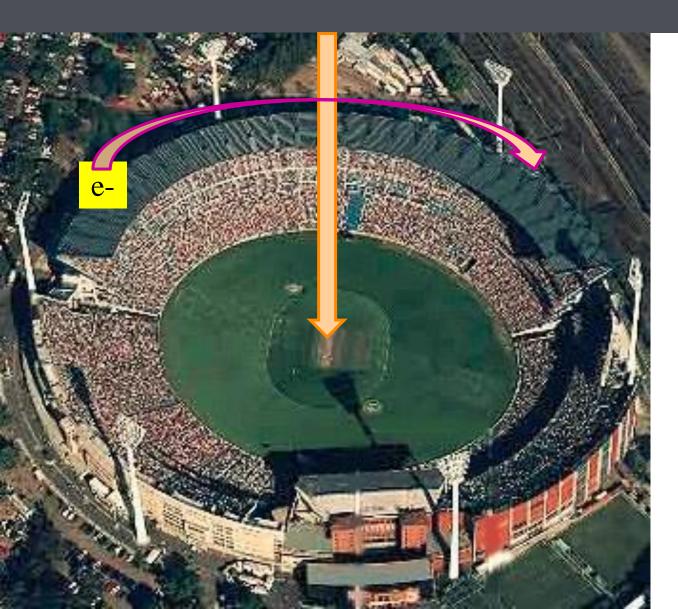
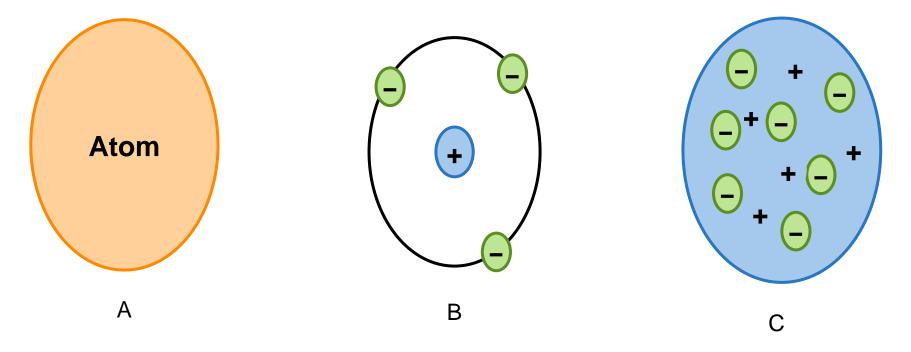




Diagram is not drawn to scale

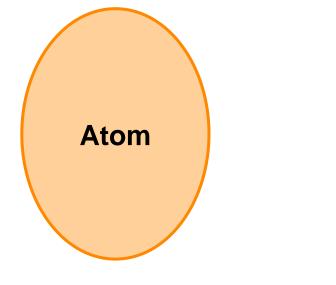
Led to the Initial Planetary Model of the Atom

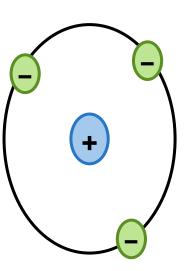
Relative Size of the Hydrogen Atom ENRICHMENT



Diameter of the ATOM ~ the size of Houston astrodome with a **NUCLEUS** the size of a marble

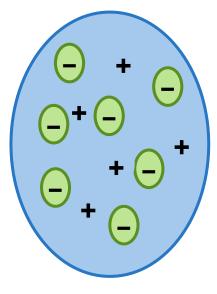
Modifying the Atomic Model


Place the models in chronological order and state who is responsible for each model (Dalton, Rutherford, Thompson)?


Modifying the Atomic Model

Place the models in chronological order and state who is responsible for each model (Dalton, Rutherford, Thomson)?

Dalton

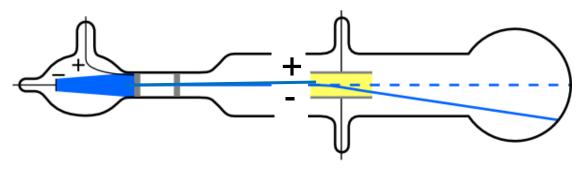

Indivisible particle

Rutherford

"nucleus"

(positive center) with orbiting electrons

Thomson


Plum pudding

Protons

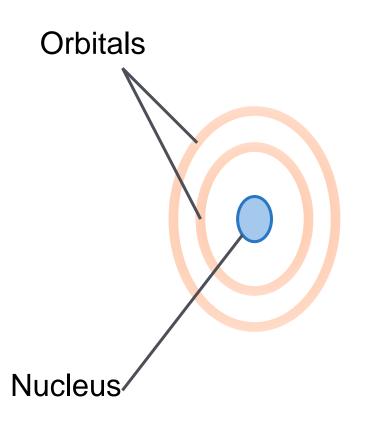
In 1886, Eugen Goldstein (1850–1930) observed a cathoderay tube to discover a new particle. Rutherford also gets some credit for the "proton".

Protons were originally called "canal rays" in the CRT, electrons were called "cathode rays"

"Canal Rays" responded opposite to the "cathode rays" (electrons) indicating an opposite charge.

Neutrons

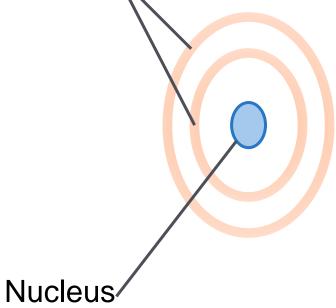
Physicist James Chadwick (1891–1974) confirmed the existence of yet another subatomic particle: the neutron.


- Chadwick bombarded Beryllium with alpha particles and found a new particle was released
- **No charge** (*did not deflect under electric or magnetic field influence*)
- Essentially the same mass as the proton
- Highly penetrable particle (*could penetrate 10-20 cm into lead*)

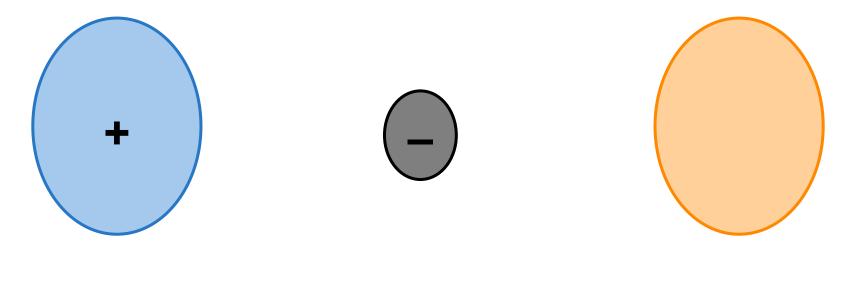
The Atom

An **Atom** is the smallest particle of an element that has the same properties as the element.

The atom can be divided into two parts:


- Nucleus: Central portion of the atom
- Orbitals: Regions surrounding the nucleus

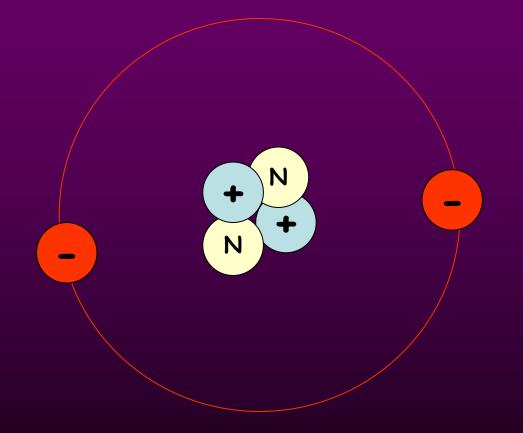
Electron Cloud Model


Orbitals

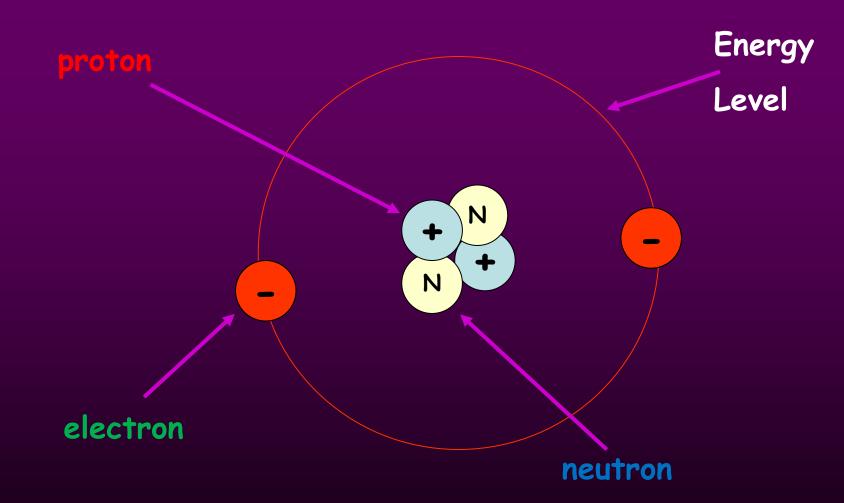
8

Charged Particles in the Atom

The atom is made of three particles: protons, electrons, and neutrons.


Protons are positively charged.

Electrons are negatively charged.


Neutrons have a net zero charge.

Label the major parts of the atom (proton, electron, neutron, energy level):

HELIUM ATOM

Different elements have different particle counts and arrangements.

<u>Neutron</u> found in the nucleus of an atom; has net zero charge (neutral); mass of 1 amu.

/ Neutron

<u>Proton</u> found in the nucleus of an atom; has a positive charge (+); mass of 1 amu.

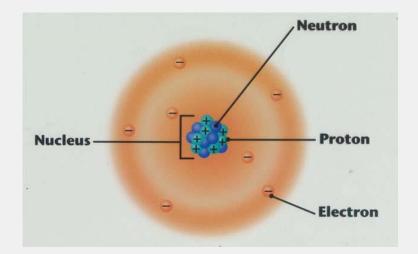
Nucleus -

Electron

Proton

<u>Electron</u> found outside the nucleus of an atom; has a negative charge (-); ~1/1836th the mass of a p+ or n

Chapter 4 Atomic Structure


A **Neutron** is made of a **proton** and an **electron** and an **antineutrino**.

Thus, the net charge of a **neutron** is **zero** (a "+" and a "-" equals zero).

Protons and neutrons have almost exactly the same mass (1 amu).

Electrons have a mass that is about 1/1836 the mass of a proton. Therefore, we ignore it. (0 amu)

Parts of an Atom

Subatomic Particles

Atomic Number represents the number of **protons** for a particular element.

In neutral atoms, the number of <u>electrons</u> equals the number of **protons**.

<u>Atomic Mass</u> represents the sum of <u>protons</u> and <u>neutrons</u> in a particular element.

<u>NOTE</u>: Do NOT confuse atomic # with atomic mass; Atomic mass is always the <u>larger</u> number.

This table summarizes the properties of the subatomic particles. (You do NOT need to know the actual masses of the subatomic particles.)

Properties of Subatomic Particles					
Particle	Symbol	Relative charge	Relative mass (mass of proton = 1)	Actual mass (g)	
	e-			9.11 × 10 ⁻²⁸	
	p+			1.67 × 10 ⁻²⁴	
	n ⁰			1.67 × 10 ⁻²⁴	

Chapter 4 Atomic Structure

This table summarizes the properties of the subatomic particles. (You do NOT need to know the actual masses of the subatomic particles.)

Properties of Subatomic Particles					
Particle	SymbolRelative chargeRelative mass (mass of proton = 1)		Actual mass (g)		
Electron	e-	1—	1/1836 = 0 amu	9.11 × 10 ⁻²⁸	
Proton	p+	1+	1 amu	1.67×10^{-24}	
Neutron	n ⁰	0	1 amu	1.67 × 10 ⁻²⁴	

Determine the Locations of Subatomic Particles

Type the name of the location of each particle.

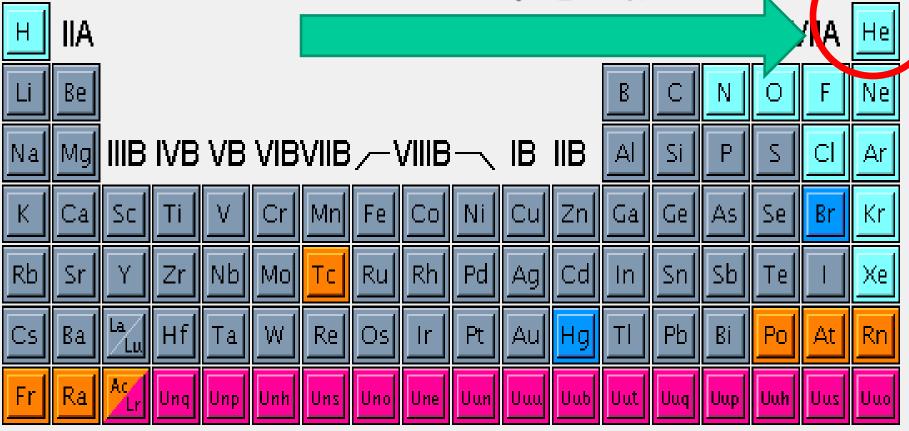
Particle	Charge	Location	~Mass	A
?	+1	?	?	B
?	0	?	?	
?	-1	?	?	

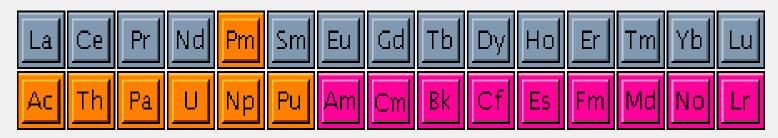

Determine the Locations of Subatomic Particles

Type the name of the location of each particle.

Particle	Charge	Location	~Mass	A		
p+	+1	nucleus	1 amu		B	
n ⁰	0	nucleus	1 amu		U	
e-	-1	orbit energy level	0 amu			

What is the structure of the atom?




How do we distinguish atoms of different elements?

Periodic Table with Atomic Numbers & Masses

1 H Hydrogen 1.01	atomic number (protons).							2 He Helum 4.00									
3 Li Littium 0.94	4 Be Benyilium 9.01	The bottom number in each cell is the average atomic weight						10 Ne Neon 20.18									
11 Na Sodum 22.99	12 Mg Magnesum 24.31		the average atomic weight.							13 Al Aluminum 26.98	14 Si Silicon 28.09	15 P Phosphorus 30.97	16 S Suftyr 32.07	17 CI Chiorine 35.45	18 Ar Argon 39.95		
19 K Potassium 39.10	20 Ca Cacum 40.08	21 Sc scandum 44.98	22 Ti Titarium 47.87	23 V Vanadum 50.94	24 Cr Chromum 52.00	25 Mn Manganese 54.94	26 Fe Iron 55.85	27 Co Cobatt 58.93	28 NI Nickel 58.69	29 Cu Copper 63.55	30 Zn 200 05.39	31 Ga Gallum 69.72	32 Ge Germanium 72.01	33 As Arsenic 74.92	34 Se selenum 78.90	35 Br Bromine 79.90	36 Kr Kr 83.80
37 Rb Mubidium 85.47	38 Sr strontum 87.02	39 Y Yttnum 88.91	40 Zr 2hoonium 91.22	41 Nb Noblum 92.91	42 Mo Molybdenun 95.94	43 Tc Technetium 98.00	44 Ru Ruthenium 101.07	45 Rh Rhodum 102.91	46 Pd Patadum 100.42	47 Ag silver 107.87	48 Cd caomum 112.41	49 In Indium 114.82	50 Sn Tin 118.71	51 Sb Antimony 121.76	52 Te Telurum 127.60	53 120.90	54 Xe Xeron 131.29
55 Cs Cestum 132.91	56 Ba Banum 137.33	57 - 71	72 Hf Hathum 178.49	73 Ta Tartaium 180.95	74 W Tungsten 183.84	75 Re Menum 180.21	76 Os Osmum 190.23	77 Ir Indium 192.22	78 Pt Patrum 195.08	79 Au Gold 196.97	80 Hg Mercury 200,59	81 TI Thailium 204.38	82 Pb Lead 207.20	83 Bi Diemuth 208.98	84 Po Polonium 205.98	85 At Astatine 209.99	86 Rn Madon 222.02
87 Fr Prancium 223.00	88 Ra Radum 226.00	89 - 103	104 Rf Putherfordiu 261.00	105 Db Dubnium 262.00	106 Sg Seaborgtum 200.00	107 Bh Sonnum 264.00	108 Hs Hassium 277.00	109 Mt Metherum 268.00	110 Ds Darmetadtiu 281.00	111 Rg Roentgeniur 272.00	112 Cn Copernicium 285.00	113 Uut Unuratum 284.00	114 Fl Pteroutum 289.00	115 Uup 288.00	116 Lv 291.00	117 Uus Unknown	118 Uuo Urunootumi 294.00
			57 La Lanthanum 138.91	58 Ce Certum 140.12	59 Pr Praseodyms 140.91	60 Nd Neodymium 144.24	61 Pm 145.00	62 Sm Samartum 150.38	63 Eu Europlum 151.97	64 Gd Gadolinium 157.25	65 Tb Terbium 158.93	66 Dy Dysproseum 162.50	67 Ho Holmum 104.93	68 Er Erolum 107.20	69 Tm Thutum 165.93	70 Yb Yllerblum 173.04	71 Lu Lutetium 174.97
			89 Ac Actirium 227.00	90 Th Thorsum 232.04	91 Pa Protacontum 231.04	92 U Uranium 238.03	93 Np Neptunium 237.00	94 Pu Plutonium 244.00	95 Am Americium 243.00	96 Cm cunum 247.00	97 Bk Derkellum 247.00	98 Cf Californium 251.00	99 Es Ensteinum 252.00	100 Fm Permum 257.00	101 Md Mendelettur 258.00	102 No Nobellum 259.00	103 Lr Liwrencium 262.00

Periodic Table of Elements

Solid

Liquid

Gas

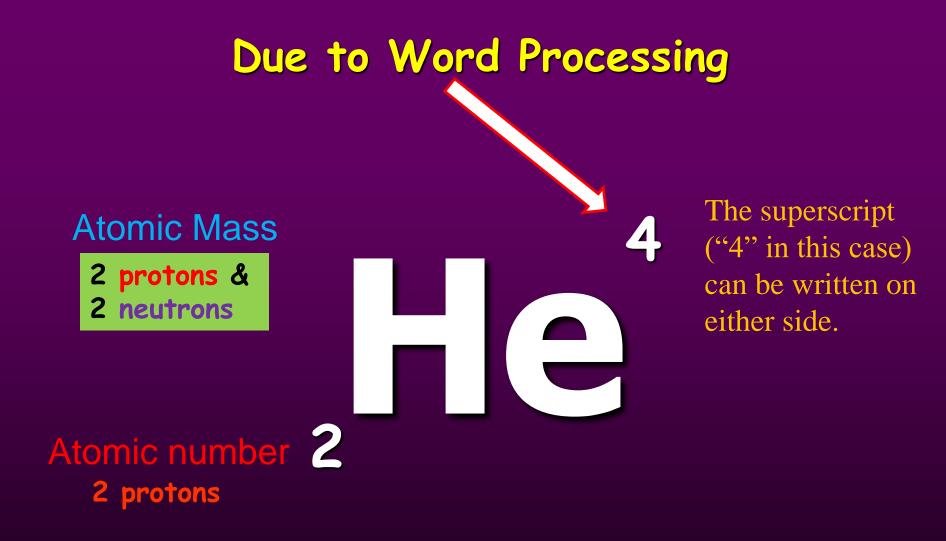
Natural

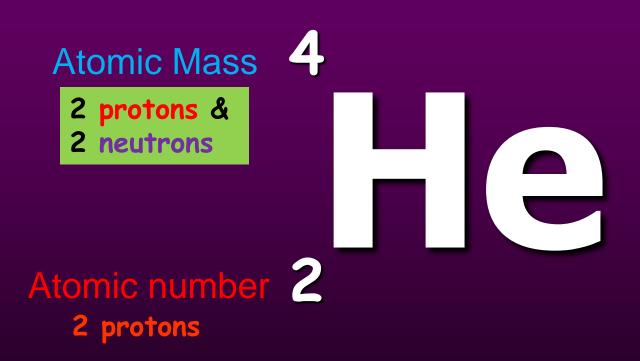
Radio Active

Artificial

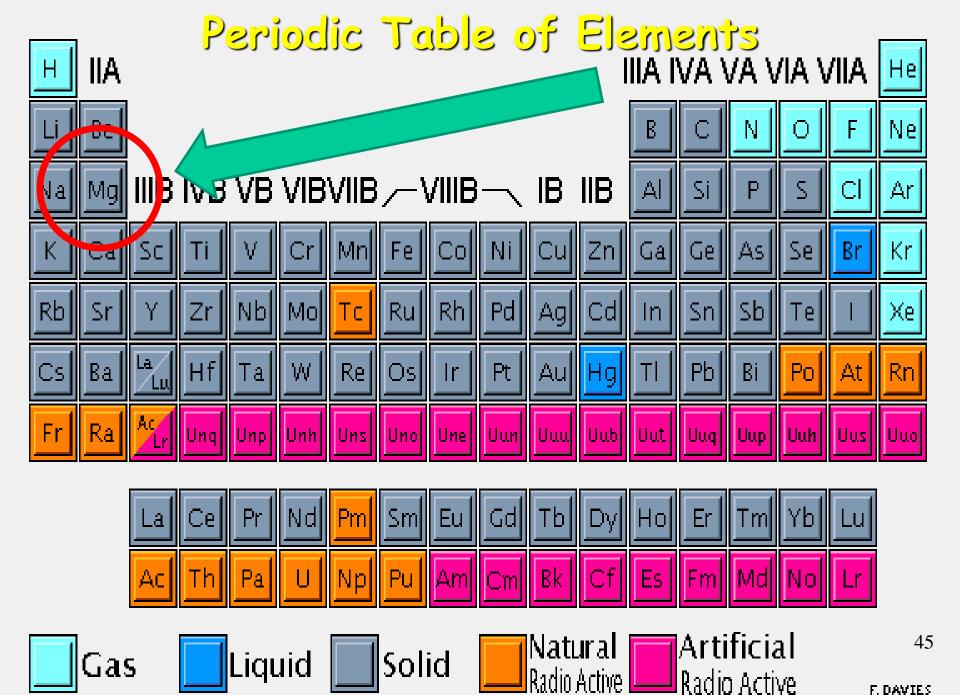
Radio Active

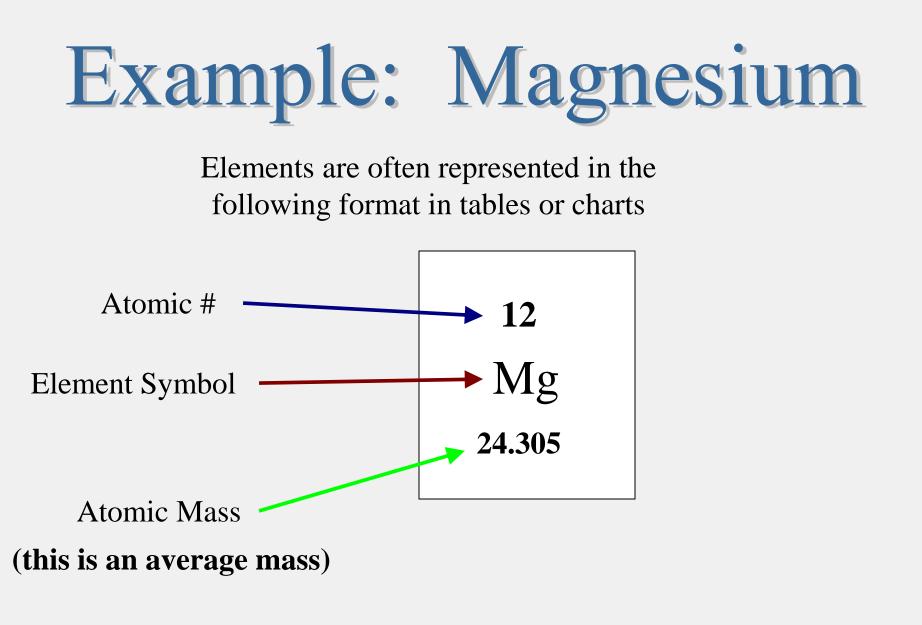
F. DAVIES


39



Atomic Mass





In a neutral atom

number of electrons = number of protons

F. DAVIES

? protons and ? neutrons

In a neutral atom

number of ? = number of ?

Module 13A Atomic Structure

12 protons and 12 Atomic mass neutrons 24 12

Atomic # 12 protons

In a neutral atom

number of electrons = number of protons

Module 13A Atomic Structure

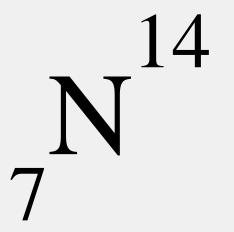
Η

TRY IT

are used by scientist as a standard way to represent elements, showing both the **atomic** and **mass numbers** [*Which is which?*]

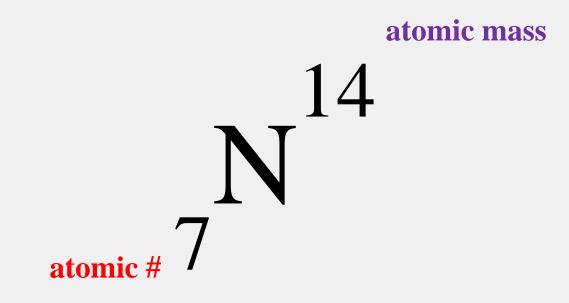
Hydrogen has ? proton, ? neutrons, and ? electron

atomic #


are used by scientist as a standard way to represent elements, showing both the atomic and mass numbers

atomic mass 1 [-]

Hydrogen has 1 proton, 0 neutrons, and 1 electron



are used by scientist as a standard way to represent elements, showing both the **atomic** and **mass numbers** [*Which is which?*]

Nitrogen has ? protons, ? neutrons, and ? electrons

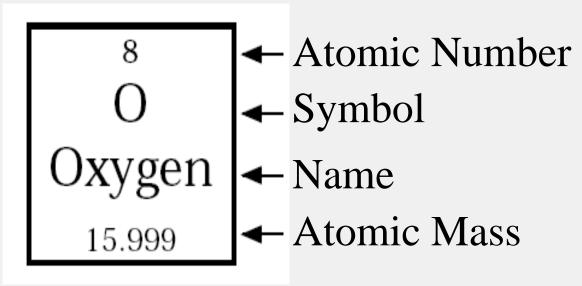
are used by scientist as a standard way to represent elements, showing both the atomic and mass numbers

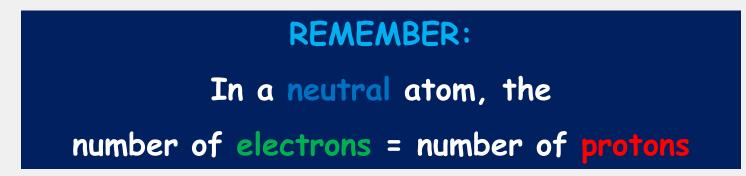
Nitrogen has 7 protons, 7 neutrons, and 7 electrons

are used by scientist as a standard way to represent elements, showing both the **atomic** and **mass numbers** [*Which is which?*]

> 56 Fe 26

Iron has ? protons, ? neutrons, and ? electrons


are used by scientist as a standard way to represent elements, showing both the atomic and mass numbers


atomic mass

56 Fe 26 atomic #

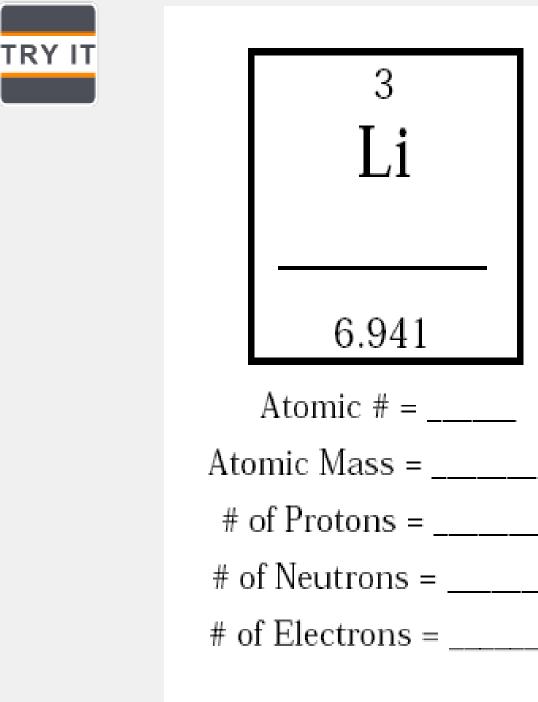
Iron has 26 protons, 30 neutrons, and 26 electrons

Practice Making Nuclear Symbols

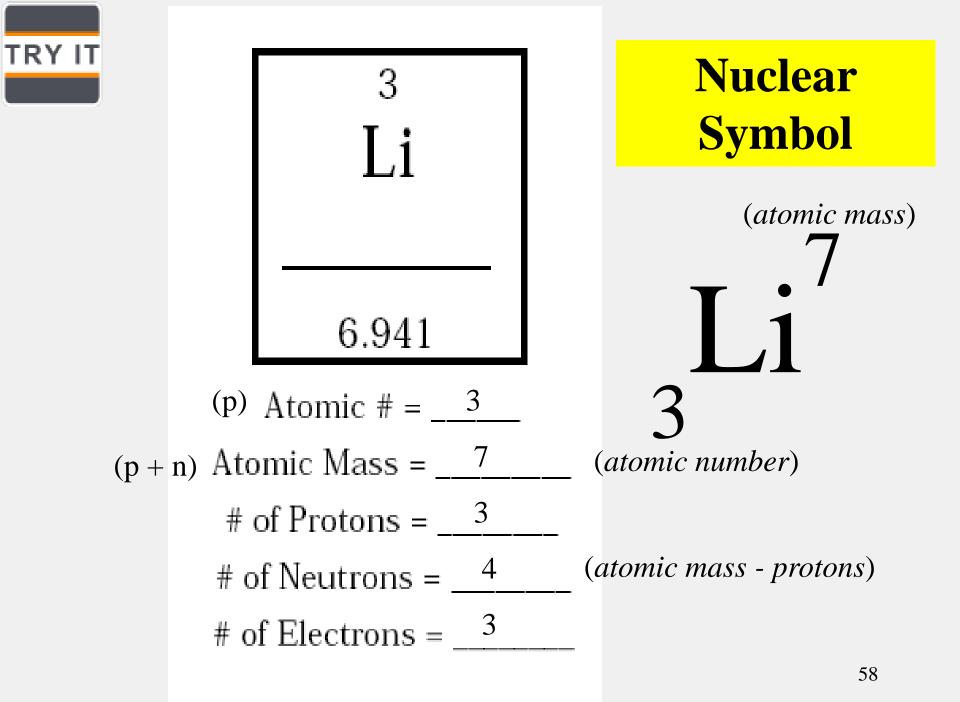
Chapter 4 Atomic Structure

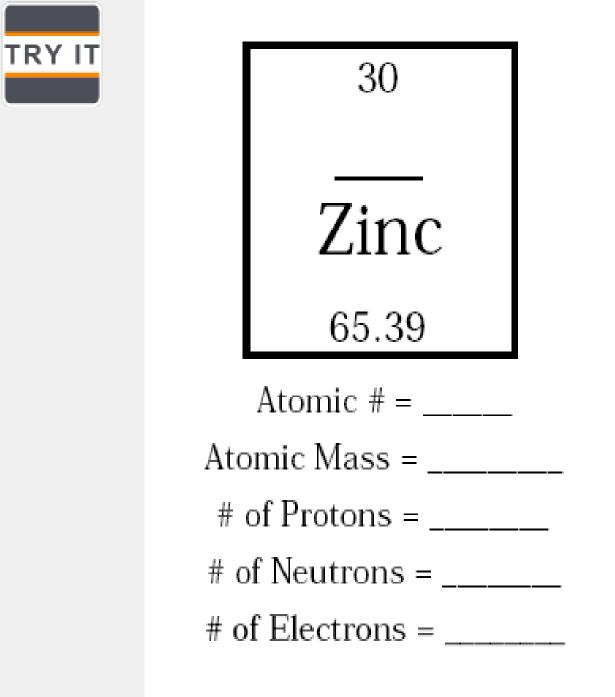
TRY IT

Practice Making Nuclear Symbols

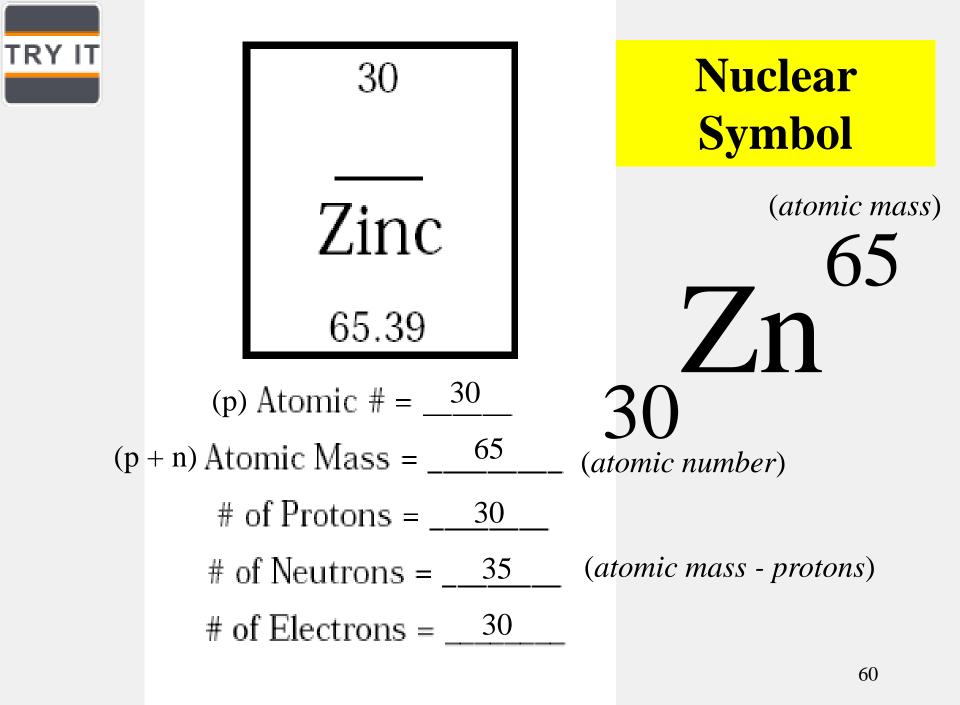

REMEMBER:

In a neutral atom, the


number of electrons = number of protons

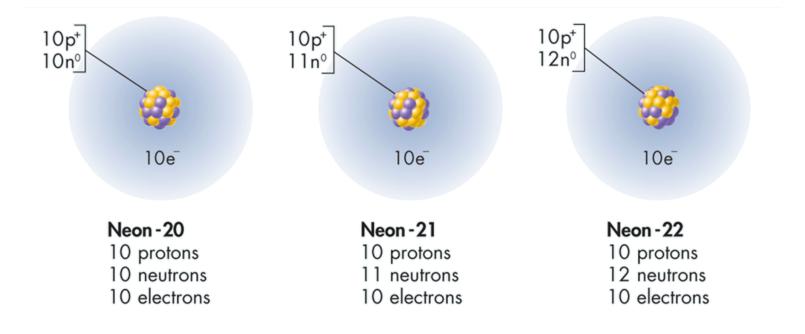

Chapter 4 Atomic Structure

TRY IT



Nuclear Symbol

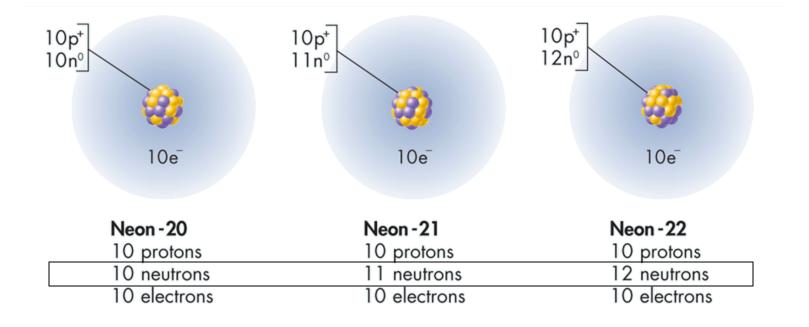
Nuclear Symbol



Isotopes

Sotopes are atoms that have the same number of protons but different numbers of neutrons. *Therefore, they have the same chemical properties.*

Neon 20, neon 21, and neon 22 are isotopes of neon.



Isotopes

Sotopes are atoms that have the same number of protons but different numbers of neutrons. *Therefore, they have the same chemical properties.*

Neon-20, neon-21, and neon 22 are isotopes of neon.

Sotopes of **Neutral** Atoms

Atoms of the same element with different mass numbers.

- Number of protons are the same
- Number of electrons are the same
- Number of neutrons
 are different

Isotope	Atomic #	n	Mass		
Sn-112	50	62	112		
Sn-114	50	64	114		
Sn-115	50	65	115		
Sn-116	50	66	116		
Sn-117	50	67	117		
Sn-118	50	68	118		
Sn-119	50	69	119		

Natural Percent Abundance of Stable Isotopes of Some Elements							
Name	Symbol	Natural percent abundance	Mass (amu)	Atomic mass			
	1 H	99.985	1				
Hydrogen	² ₁ H	0.015	2	1.0079			
	³ H	negligible	3				
	³ ₂ He	0.0001	3	4 0020			
Helium	⁴ ₂ He	99.9999	4	4.0026			
Carban	¹² C	98.89	12	40.044			
Carbon	¹³ ₆ C	1.11	13	12.011			
	¹⁶ 0	99.759	16				
Oxygen	17 O	0.037	17	15.999			
		0.204	18				
Chloring	35 CI 17	75.77	35	25.452			
Chlorine	37 CI	24.23	37	35.453			