Sample Problems

- 288 tricycles
 1 seat/bike = 288 seats;
 3 wheels/bike → 3 x 288 bikes = 864 wheels
 2 pedals/bike → 2 x 288 bikes = 576 pedals
- Answers will vary but should include the correct number of "parts" to make the product.

FIGURE 12.2 10 molecules NH₃
3. 2 molecules H₂ + 1 molecule O₂ \rightarrow 2 molecules H₂O
2 mol H₂ + 1 mol O₂ \rightarrow 2 mol H₂O
44.8 L H₂ + 22.4 L O₂ \rightarrow 44.8 L H₂O

4. $C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g)$ $1 \text{ mol } + 3 \text{ mol } \rightarrow 2 \text{ mol } + 2 \text{ mol}$ $22.4 \text{ L/mol } + 3(22.4 \text{ L/mol}) \rightarrow 2(22.4 \text{ L/mol}) + 2(22.4 \text{ L/mol})$ $28 \text{ g/mol } + 3(32 \text{ g/mol}) \rightarrow 2(44 \text{ g/mol}) + 2(18 \text{ g/mol})$ $124 \text{ g} \rightarrow 124 \text{ g}$

Lesson Check Answers

- as a basis to calculate how much reactant is needed or product is formed in a reaction
- numbers of atoms, molecules, or moles; mass; and volumes
- Both a balanced equation and a recipe give quantitative information about the starting and end materials.
- mass and atoms

- 9. 2 atoms K + 2 molecules $H_2O \rightarrow$ 2 formula units KOH + 1 molecule H_2 2 mol K + 2 mol $H_2O \rightarrow$ 2 mol KOH + 1 mol H_2 78.2 g K + 36.0 g $H_2O \rightarrow$ 112.2 g KOH + 2.0 g H_2
- **10.** $C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$ 46.0 g $C_2H_5OH + 96.0$ g $O_2 \rightarrow$ 88.0 g $CO_2 + 54.0$ g H_2O 142.0 g reactants → 142.0 g products

Sample Problems

```
11. a. 4 mol Al 3 mol O<sub>2</sub> 4 mol Al 2 mol Al<sub>2</sub>O<sub>3</sub>

2 mol Al<sub>2</sub>O<sub>3</sub> 3 mol O<sub>2</sub> 2 mol Al<sub>2</sub>O<sub>3</sub>

4 mol Al 2 mol Al<sub>2</sub>O<sub>3</sub> 3 mol O<sub>2</sub> 2 mol Al<sub>2</sub>O<sub>3</sub>
```

- 11b. ? $/ 4 \text{ mol Al} = 3.7 \text{ mol } / 2 \text{ mol Al}_2O_3 \rightarrow 7.4 \text{ mol Al}$
- 12a. ? / 3 mol $O_2 = 14.8 \text{ mol } / 4 \text{ mol Al}$ $\rightarrow 11.1 \text{ mol } O_2$
- 12b. ? / 2 mol $Al_2O_3 = 0.78 \text{ mol } / 3 \text{ mol } O_2 \rightarrow 0.52 \text{ mol } Al_2O_3$

FIGURE 12.4 No; the given could be a product.

- 13. 5.00 g CaC₂ x 1 mol / 64.1 g = 0.078 mol CaC₂ 1:1 mol ratio CaC₂ : C₂H₂ 0.078 mol C₂H₂ x 26.0 g / mol = 2.03 g C₂H₂
- 14. 49.0 g H₂O x 1 mol / 18.0 g = 2.72 mol H₂O 1:2 mol ratio CaC₂: H₂O 2.72 mol / 2 = 1.36 mol CaC₂

Figure 12.5 6.02×10^{23} representative molecules / 1 mol

- 15. 6.54 g KClO₃ x 1 mol / 122.6 g = 0.0533 mol KCO₃ 2:3 mol ratio KClO₃ : O₂ 0.0533 mol / 2 mol = X mol / 3 mol \rightarrow 0.0800 mol O₂ 0.0800 mol O₂ x 6.02 x 10^{23} molecules/mol = 4.82 x 10^{22} molecules
- 16. 5.00×10^{22} molecules NO x 1 mol / 6.02×10^{23} molecules = 0.083 mol NO 3:1 mol ratio NO₂ : NO 0.083 mol NO x 3 mol NO₂ = 0.249 mol NO₂ 0.249 mol NO₂ x 46.0 g/mol = 11.5 g NO₂
- 17. 3.86 L CO x 1 mol / 22.4 L = 0.172 mol CO 2:1 mol ratio CO : O₂ 0.172 mol CO / 2 mol = 0.086 mol O₂ x 22.4 L/mol = 1.93 L O₂

Lesson Check Answers

- 21. Mole ratios are written using the coefficients from a balanced chemical equation. They are used to relate moles of reactants and products in stoichiometric calculations.
- Convert the given quantity to moles; use the mole ratio from the equations to find the moles of the wanted; convert moles of wanted to the desired unit.
- 23. a. 176 g CO₂, 36.0 g H₂O b. 2.46 mol H₂O
- 24. 2 mol C₃H₇OH 2 mol C₃H₇OH 2 mol C₃H₇OH 9 mol O₂ 9 mol O₂ 6 mol CO₂ 9 mol O₂ 6 mol CO₂ 8 mol H₂O 6 mol CO₂ 8 mol H₂O 8 mol H₂O 9 mol O₂ 6 mol CO₂ 8 mol H₂O 6 mol CO₂ 8 mol H₂O 8 mol H₂O 2 mol C₃H₇OH 2 mol C₃H₇OH 2 mol C₃H₇OH 9 mol O₂ 9 mol O₂ 6 mol CO₂
- 25. A chemical reaction's mole ratios are derived from the relationships between coefficients in a balanced chemical equation.

Sample Problems

- 26. 1:3 mol ratio C_2H_2 : O_2 2.70 mol C_2H_2 x 3 mol O_2 = 8.1 mol O_2 are needed to react with C_2H_2 , but you only have 6.30 mol O_2 . Therefore, O_2 is the limiting reagent.
- 5.00 g Mg x 1 mol / 24.3 g = 0.206 mol Mg available to react
 6.00 g HCl x 1 mol / 36.5 g = 0.164 mol HCl available to react
 1:2 mol ratio Mg : HCl
 0.206 mol Mg x 2 mol HCl = 0.412 HCl are needed to react with Mg,
 but you only have 0.164 mol HCl. Therefore, HCl is the limiting reagent.
- 28a. 1:2 mol ratio C_2H_4 : O_2 2.70 mol C_2H_2 x 2 mol O_2 = 5.40 mol O_2 are needed to react with C_2H_4 Since you have 6.30 mol O_2 (extra amount), C_2H_4 is the limiting reagent.
- 28b. Use the limiting reagent to calculate the amount of product 1:2 mol ratio C_2H_4 : H_2O 2.70 mol C_2H_2 x 2 mol H_2O = 5.40 mol H_2O are produced 5.40 mol H_2O x 18 g/mol = 97.2 g H_2O
- 29. 2:5 mol ratio C₂H₂: O₂
 2.40 mol C₂H₂ / 2 mol C₂H₂ = ? / 5 mol O₂ = 6 mol O₂ are needed to react with C₂H₂. Since you have 7.40 mol O₂ (extra amount), C₂H₂ is the limiting reagent.
 2:2 mol ratio C₂H₂: H₂O
 - 2.40 mol $C_2H_2 = 2.40$ mol H_2O are produced 2.40 mol H_2O x 18 g/mol = 43.2 g H_2O
- 30. Theoretical yield assumes that all the reactants react completely to produce as much product as possible.

 $84.8 g Fe_2O_3 \times 1 mol / 159.6 g = 0.531 mol Fe_2O_3$

1:2 mol ratio Fe₂O₃: Fe

 $0.531 \text{ mol Fe}_2\text{O}_3 \times 2 \text{ mol Fe} = 1.063 \text{ mol Fe}$

1.063 mol Fe x 55.8 g/mol = 59.3 g Fe

31. You need the balanced chemical reaction first:

$$Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$$

Theoretical yield assumes that all the reactants react completely to produce as much product as possible.

5.00 g Cu x 1 mol / 63.5 g = 0.0787 mol Cu

1:2 mol ratio Cu : Ag

0.0787 mol Cu x 2 mol Ag = 0.1575 mol Ag

0.1575 mol Ag x 107.9 g/mol = 17.0 g Ag

32. You must determine the theoretical yield based on the balanced chemical reaction: $SiO_{2(s)} + 3C_{(s)} \rightarrow SiC_{(s)} + 2CO_{(g)}$

$$50.0 \text{ g SiO}_{2(s)} \times 1 \text{ mol} / 60.1 \text{ g} = 0.832 \text{ mol SiO}_{2(s)}$$

Since there is an excess of carbon, we use as the $SiO_{2(s)}$ limiting reactant.

1:1 mol ratio $SiO_{2(s)}$: $SiC_{(s)}$

 $0.832 \text{ mol SiC}_{(s)} \times 40.1 \text{ g/mol} = 33.4 \text{ g} \rightarrow \text{theoretical yield}$

 $27.9 \text{ g} / 33.4 \text{ g} \times 100\% = 83.5\% \text{ yield}$

33. You must determine the theoretical yield based on the balanced chemical reaction: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

Find Moles based on Actual:

 H_2 15.0 g x 1 mol/2.00 g = 7.50 mol

 N_2 15.0 g x 1 mol/28.0 g = 0.536 mol

Mol ratio of $N_2(g)$: $3H_2(g) = 1:3$, meaning that nitrogen is the limiting reactant $(0.536 \text{ mol/1 mol} = \text{X/3 mol} = 1.61 \text{ mol } 3H_2(g)$ is needed, but we have much more than that available.

Mol ratio of $N_2(g) : NH_3(g) = 1:2$

... $0.536 \text{ mol/1 mol} = X/2 \text{ mol} = 1.07 \text{ mol } NH_3(g)$

1.07 mol NH₃(g) x 17.0 g/mol = 18.2 g \rightarrow theoretical yield

 $10.5 \text{ g} / 18.2 \text{ g} \times 100\% = 57.7\% \text{ yield}$

Lesson Check Answers

- 34. In a chemical reaction, an insufficient quantity of any of the reactants will limit the amount of product that forms.
- 35. The efficiency of a reaction carried out in a laboratory can be measured by calculating the percent yield.
- 36. A limiting reagent is a reagent that determines how much product can be formed in a reaction. An excess reagent is a reactant that is not completely used up in a reaction.
- 37. 26.7 g SO.
- **38.** 70.5%