I. Energy: the capacity to do work ("joules" \rightarrow j)

A. Potential Energy (PE) \rightarrow stored energy

- 1. An object's energy just prior to falling (position)
- (2. Food, Heat

Chemical energy

- 3. Fuel
- 4. Ammunition

B. Kinetic Energy (KE) \rightarrow energy of motion

- 1. A falling object
- 2. <u>Temperature</u>
 - Motion of molecules

C. Specific Forms of Energy (Each has both PE & KE)

- 1. <u>Chemical</u> energy \rightarrow The energy associated with chemical changes (*energy is also involved with physical changes*)
- 2. <u>Mechanical</u> energy \rightarrow sum total of PE + KE to accomplish a task using force and involving motion (i.e. associated with machines)
 - For *elastic collisions*, mechanical energy is conserved but for *inelastic collisions*, some mechanical energy is converted into heat.
- 3. <u>Electrical</u> energy \rightarrow flow of e-
- 4. Light energy (electromagnetic radiation)
 - a. gamma ... highest energy, highest frequency, shortest wavelength
 - b. X-ray
 - c. UV
 - d. visible (VIBGYOR) ... 400 nm to 700 nm
 - e. infrared
 - f. microwave
 - g. radio... lowest energy, lowest frequency, longest wavelength (> 1 m)
- 5. <u>Sound</u> energy \rightarrow sonar, ultrasound
- 6. <u>Magnetic</u> energy \rightarrow magnetic field (NMR diagnostic techniques) MRI

- 7. <u>Heat</u> energy \rightarrow form of energy that takes into account the quantity of matter
- 8. <u>Nuclear</u> Energy \rightarrow fission (splitting atoms), fusion (combining atoms)

D. Energy Units

1. **Joule** (j) \rightarrow When a force of 1 Newton is applied through a distance of 1 meter, 1 joule of work is done

E(joules) = f(Newtons) x d(meters)

2. Calorie → The amount of energy required to raise 1 gram of water, one degree Celsius.

Group Activity

Have students chose a reaction, a machine, etc. to discuss the energy transformations involved (*e.g. cell phone, toaster, eating*)

 $electrical \rightarrow chemical \rightarrow heat \rightarrow light$

mechanical (push handle) \rightarrow electrical \rightarrow heat / light \rightarrow chemical (toast)

1.	The type of energy given to a car when you speed it up isa) potentialb) kineticc) chemicald) electromagnetic
2.	When a piece of paper catches on fire it is converting energy to energy.a) KE to heatb) light to heatc) chemical to heatd) chemical to PE
3.	The energy stored in the water behind a tall dam is in the form ofa) gravitational potentialc) kineticb) electromagneticd) compressional energy
4.	When an electric motor lifts an elevator, the electrical energya) remains in the motorc) is doubledb) disappearsd) is converted into other forms
5.	When a ball is dropped on the floor, it bounces lower and lower until it stops. This is anexample of energy being converted to energy.a) potentialb) heat & soundc) electromagneticd) nuclear
6.	Allie climbs to the top of a ladder.While doing this, she was converting energy to energy c) kinetic \rightarrow heata) thermal \rightarrow soundc) kinetic \rightarrow heatb) chemical \rightarrow gravitationald) chemical \rightarrow elastic
7.	A boy blows up a balloon, and then sticks a pin in it to make it pop. When it pops, it converts energy into energy. a) elastic \rightarrow sound c) kinetic \rightarrow heat b) thermal \rightarrow sound d) kinetic \rightarrow elastic
8.	A basketball rolls down a hallway, gradually slowing down. During this time, its kinetic energy is transformed into what type of energy? a) elastic b) heat c) electromagnetic d) potential
9.	A bungee jumper (1) falls freely, (2) accelerates while falling, (3) gets suspended by the bungee cord which stretches 5 meters beyond its normal length. What energy transformations best show what took place? a. gravitational PE \rightarrow KE \rightarrow elastic PE b. elastic PE \rightarrow gravitational KE \rightarrow chemical c. chemical \rightarrow heat \rightarrow KE d. mechanical \rightarrow KE \rightarrow elastic PE
10.	What energy transformations are involved with moving a car? a. chemical (fuel) → thermal (engine) → mechanical (crankshaft/wheels) b. mechanical (turn key) → thermal (engine) → mechanical (crankshaft/wheels) c. mechanical (shift/pedal) → electrical (battery/ignition) → chemical (fuel/combustion) d. all of the choices

- 1. b
- 2. 3. с
- a
- 4. d
- 5. b ... friction slows down the ball; bouncing produces sound (also lowers KE)
- 6. c ... climbing involves KE, exertion produces heat
- 7. a ... the elasticity causes the PE to build up, the "pop" is a sound
- 8. b
- 9. a
- 10. d