
Chapter 9 Chemical Names and Formulas Naming and Writing Formulas for Ionic Compounds Molecular Compounds Acids and Bases

The Laws Governing How Compounds Form

FORMULAS CHAPTER 9A

Examples #4- Formulas to Names

Topics:

1. Chemical Names and Formulas

Objectives:

- 1. Explain how to determine the charges of monatomic ions.
- 2. Apply the rules for naming and writing formulas for compounds with polyatomic ions.
- 3. Determine the names and formulas of ionic and covalent compounds, of acids and bases.
- 4. Understand Law of Definite Proportions

Inquiry: Use Your Knowledge of Algebra in Chemistry

Ionic compounds can be made from a m_____ ion and a ____metallic ion.

Metallic ions are p_____

(c_____). Nonmetallic ions are n_____ (a_____). Find the net charge when the following atoms combine (use octet rule):

Alkali metal + halogen

Alkaline earth metal + Group VIA

Group IA and Group VIA

Group IIIA and Group VIIA

Group IIA and Group VA

M(+1) + (-2) = 0 Groups? What does M have to be?

(+2) + N(-1) = 0 Groups? What does N have to be?

M(+2) + N(-3) = 0 Groups? What do M and N have to be?

M(+3) + N(-3) = 0 Groups? What do M and N have to be?

(+3) + N(-1) = 0 Groups? What does N have to be? _____

Inquiry: Use Your Knowledge of Algebra in Chemistry

Ionic compounds can be made from a metallic ion and a nonmetallic ion. Metallic ions are positive (cations). Nonmetallic ions are negative (anions). Find the net charge when the following atoms combine (use octet rule):

Alkali metal + halogen

(+1) + (-1) = 0

Alkaline earth metal + Group VIA

(+2) + (-2) = 0

Group IA and Group VIA

2(+1) + (-2) = 0

Group IIIA and Group VIIA

(+3) + 3(-1) = 0

Bonding requires:
Electrical neutrality
Full valence

Group IIA and Group VA

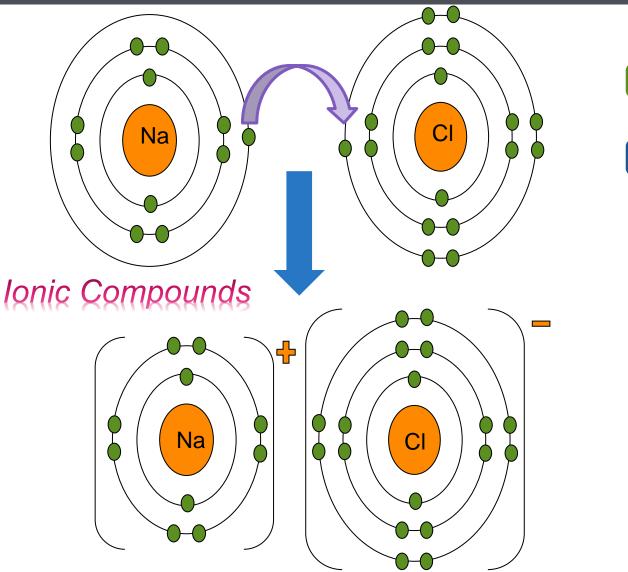
3(+2) + 2(-3) = 0

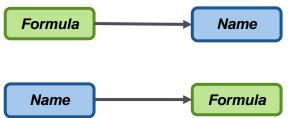
M(+1) + (-2) = 0 Group IA + VIA What does M have to be? 2

(+2) + N(-1) = 0 Group IIA + VIIA What does N have to be? 2

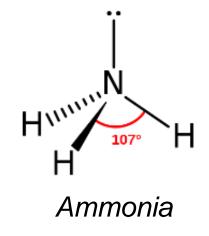
M(+2) + N(-3) = 0 Group IIA + VA What do M and N have to be?

M = 3 and N = 2


M(+3) + N(-3) = 0 Group IIIA + VA What do M and N have to be?


M = 1 and N = 1

(+3) + N(-1) = 0 Group IIIA + VIIA What does N have to be? 3


What are the Basics of Naming Compounds and Molecules?

Н

Н

Covalent Molecules

Chemical Symbols

Chemical Symbols on the Periodic Table are a Shorthand for the elements — Symbols are either ONE or TWO letters

• The first letter is ALWAYS capitalized, while the second letter is small case Na (for sodium)

Letters for the symbols are derived in various ways:

Use the first letter of the Chemical Element

Use the first and second letter of the Chemical Element.

Use the first and third letter of the Chemical Element.

Some symbols are derived from the Latin origin of the element.

Chemical Symbols

Chemical Symbols on the Periodic Table are a Shorthand for the elements — Symbols are either ONE or TWO letters

• The first letter is ALWAYS capitalized, while the second letter is small case Na (for sodium)

Letters for the symbols are derived in various ways:

Use the first letter of the Chemical Element Carbon, Nitrogen, Boron, Hydrogen

Use the first and second letter of the Chemical Element. Beryllium (Be), Helium (He), Neon (Ne), Calcium (Ca), Lithium (Li)

Use the first and third letter of the Chemical Element. Cesium (Cs), Chlorine (Cl), Magnesium (Mg)

Some symbols are derived from the Latin origin of the element. e.g. Mercury (Hg), Sodium (Na), Tin (Sn), Silver (Ag), Gold (Au), Iron (Fe), Potassium (K), Tungsten (W), etc.

Chemical Formulas

Chemical Formulas are used to represent the composition of elements in a compound or molecule.

Subscripts

Indicate the number of atoms within ONE compound or molecule $Ca(CIO_3)_2 \rightarrow CaCI_2 + _O_2_{(g)}$

Chemical Formulas

Chemical Formulas are used to represent the composition of elements in a compound or molecule.

Subscripts

Indicate the number of atoms within ONE compound or molecule

$$Ca(CIO_3)_2 \rightarrow CaCI_2 + _O_{2(g)}$$

$$(CIO_3 + CIO_3 = 2CI + 6C)$$

Notice, that there are 6 oxygen atoms on the left (reactants) but only 2 on the right (products) ...

Chemical Formulas

Coefficients are used to balance chemical equations:

Coefficients

Indicate the number of compounds or molecules ("moles") and are used to balance Chemical Equations or reactants & products

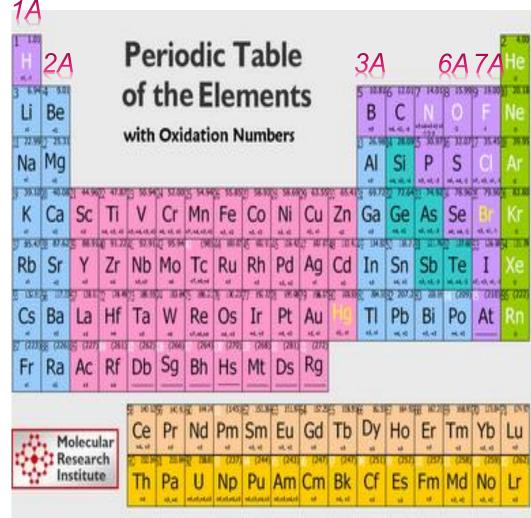
$$Ca(ClO_{3})_{2} \rightarrow CaCl_{2} + {}^{3}O_{2(g)}$$
$$Ca(ClO_{3})_{2} \rightarrow CaCl_{2} + {}^{0}O_{2(g)} + {}^{0}O_{2(g)} + {}^{0}O_{2(g)} + {}^{0}O_{2(g)}$$

There are the same number of each element on each side of the equation.

 $1 Ca, 2 Cl, 6 O \rightarrow 1 Ca, 2 Cl, 6 O$

Typical Patterns of Ions

Metals:


form cations (positive charge)

- Group IA: +1
- Group IIA: +2
- Group IIIA: +3

Nonmetals:

form anions (negative charge)

- Group 16 (VIA): -2
- Group 17 (VIIA): -1

Nomenclature: "rules" for "naming" compounds

- Name the cation(s) first, then anion(s)
- Metal cations: name of metal ("as is")
- Nonmetal anions: replace ending with -ide

- KBr
 - K⁺¹ = potassium cation
 - Br¹⁻ = bromide anion

Name: potassium bromide

Write the Chemical Name from the formula (Identify the cations & anions using the Octet rule)

MgS

Na₃N

 AI_2O_3

 BF_3

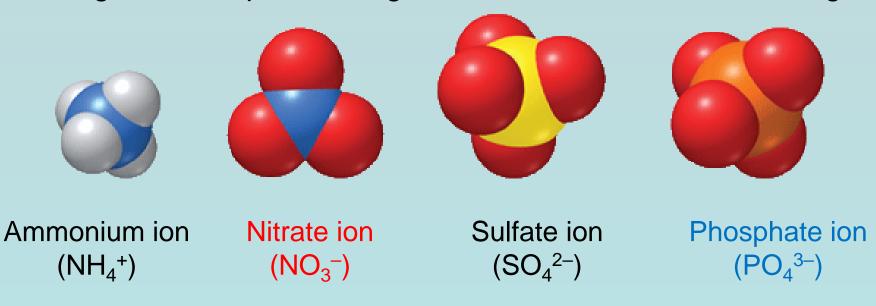
Write the Chemical Name from the formula (Identify the cations & anions using the Octet rule)

LiBr

Li⁺ = lithium cation Br⁻ = Bromide anion Name \rightarrow lithium bromide

MgS Mg²⁺ = magnesium cation S⁻² = sulfide anion Name \rightarrow magnesium sulfide

 Al_2O_3 Al^{+3} = aluminum cation O^{-2} = oxide anion Name \rightarrow aluminum oxide $Ca^{2+} = calcium cation$ CI^{-} = chloride anion Name \rightarrow calcium chloride Na₃N Na⁺ = sodium cation N^{3-} = nitride anion Name \rightarrow sodium nitride BF₃ B^{+3} = boron cation F^- = fluoride anion


Name \rightarrow boron fluoride

Note: for IONIC compounds, the number of atoms does NOT matter in the naming.

Polyatomic Ions

Polyatomic ions are covalently bonded atoms (composed of more than one atom), which <u>behave as ONE unit</u> and carries a charge.

The sulfate anion (SO_4^{2-}) consists of one sulfur atom and four oxygen atoms, but chemically acts as ONE molecule. These five atoms together comprise a single anion with an overall 2– charge.

The atoms are held together by polar covalent bonds, but the overall polyatomic ion bonds IONICally.

Naming Polyatomic Ions

You may use a reference table when naming polyatomic ions (download from Course Resources).

Со	mmon l	Polyatomic lons	Name a polyatomic ion "as is" whether it is a	
Charge	Formula	Name	cation or an anion.	
	HSO ₄ -	Hydrogen sulfate	Polyatomic ions may be	
1-	NO ₂ - CIO-	Nitrite Hypochlorite	listed first (cations) or last	
	SO ₃ ²⁻	Sulfite	(anions).	
2–	SO ₄ ²⁻	Sulfate	e.g. (NH₄+)(PO₄³−)	
	CO ₃ ^{2–}	Carbonate	Ammonium phosphate	
3–	PO ₄ ^{3–}	Phosphate		
1+	NH ₄ +	Ammonium	Using parenthesis	

перз.

Name the compounds & determine the # of atoms:

Ion Name	Formula		
ammonium (uh moh' nee uhm)	$\rm NH_4^+$		
hydroxide (hye drox'ide)	OH-		
chlorate (klor' ate)	ClO3 ⁻		
chlorite (klor'ite)	ClO ₂ -		
nitrate (nye' trate)	NO ₃ -		
nitrite (nye' trite)	NO ₂ -		
acetate (as' uh tate)	$C_2H_3O_2$		

Ion Name	Formula
cyanide (sigh' uh nide)	CN-
carbonate (kar' bun ate)	CO ₃ ²⁻
chromate (krohm' ate)	CrO ₄ ²⁻
dichromate (dye krohm' ate)	$Cr_2O_7^{2-}$
sulfate (suhl' fate)	SO42-
sulfite (suhl' fite)	SO32
phosphate (fahs' fate)	PO43-

Na₃⁺(PO₄³⁻)

 $(NH_4^+)_2(CO_3^{2-})$

Mg⁺²(ClO₃⁻)₂

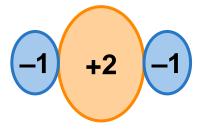
Al₂+3(SO₄²⁻)₃

Name the compounds & determine the # of atoms:

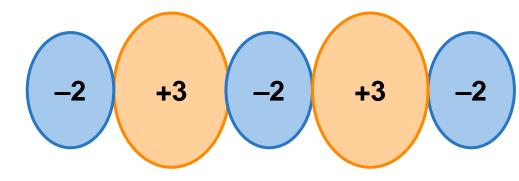
Ion Name	Formula		
ammonium (uh moh' nee uhm)	NH4 ⁺		
hydroxide (hye drox'ide)	OH-		
chlorate (klor' ate)	ClO ₃ -		
chlorite (klor'ite)	ClO ₂ -		
nitrate (nye' trate)	NO ₃ -		
nitrite (nye' trite)	NO ₂ -		
acetate (as' uh tate)	$C_2H_3O_2^-$		

Ion Name	Formula		
cyanide (sigh' uh nide)	CN-		
carbonate (kar' bun ate)	CO32-		
chromate (krohm'ate)	Cr04 ²⁻		
dichromate (dye krohm' ate)	$Cr_2O_7^{2-}$		
sulfate (suhl' fate)	SO42-		
sulfite (suhl' fite)	SO32		
phosphate (fahs' fate)	PO ₄ ³⁻		

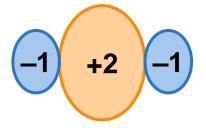
 $Na_3^+(PO_4^{3-}) \dots 3 + 1 + 4 = 8$ atoms


sodium phosphate

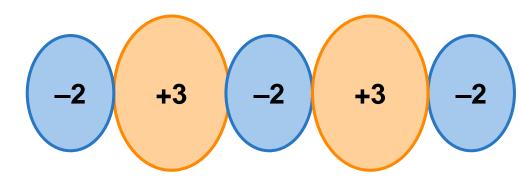
 $Mg^{+2}(ClO_3^-)_2 \dots 1 + 2 + 6 = 9$ atoms magnesium chlorate $(NH_4^+)_2(CO_3^{2-})...2 + 8 + 1 + 3 = 14$ atoms ammonium carbonate


 $Al_2^{+3}(SO_4^{2-})_3 \dots 2 + 3 + 12 = 17$ atoms aluminum sulfate

How many –1 ions would bond with a +2 ion?


What is the ratio of +3 ions to -2 ions in a neutral compound?

How many –1 ions would bond with a +2 ion?


$$(+2) + N(-1) = 0$$

two -1 atoms balance the one +2 atom

What is the ratio of +3 ions to -2 ions in a neutral compound?

$$M(+3) + N(-2) = 0$$

Three -2 atoms balance two +3 atoms

Writing Chemical Formulas from the Name

Write the metallic "ion" (cation) first and the non-metallic "ion" (anion) last

- Metals lose electrons ... therefore, become positively charged (cations)
- Non-metals gain electrons ... become negatively charged (anions)

e.g. sodium chloride: Na⁺¹Cl⁻¹ NOT Cl⁻¹Na⁺¹

Write the Chemical Formulas from the Name

sodium phosphate

ammonium carbonate

sodium phosphate Sodium: Na⁺ Phosphate: PO_4^{3-} (3)(+1) + (-3) = 0 $Na_3^+(PO_4)^{3-}$

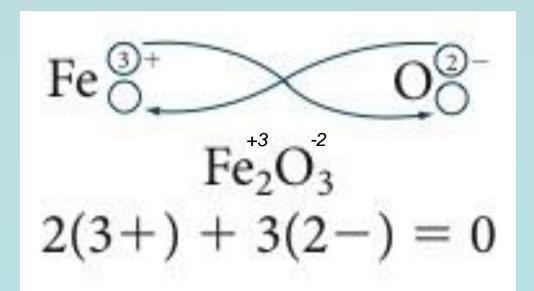
ammonium carbonate Ammonium: NH_4^+ Carbonate: CO_3^{2-} (2)(+1) + (-2) = 0 $(NH_4)_2^+(CO_3)^{-2}$ $NH_4^+(CO_3)^{2-}$

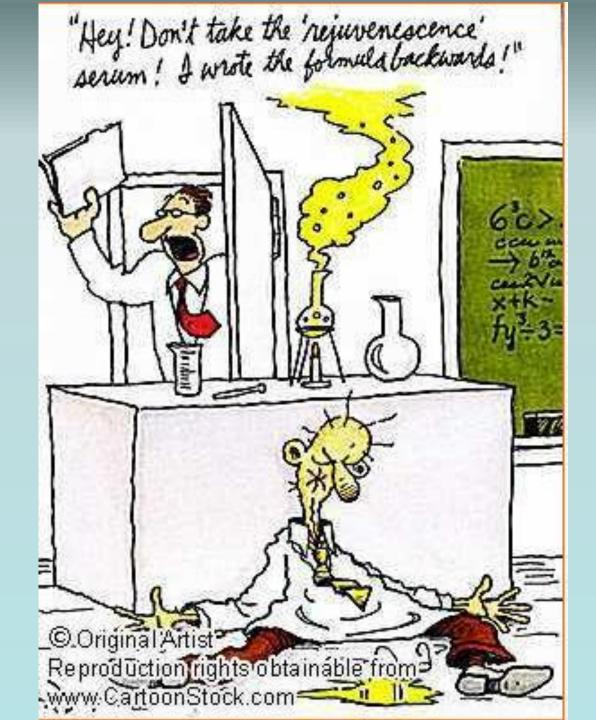
Writing Chemical Formulas using the Criss-Cross Method

The numerical value of the charge of each ion (oxidation state) is crossed over and becomes the subscript for the other ion.

Notice that the signs of the charges are dropped.

The formula is correct because the overall charge of the formula is zero, and the subscripts are expressed in the lowest whole-number ratio.




Write the chemical formula for Iron III Oxide

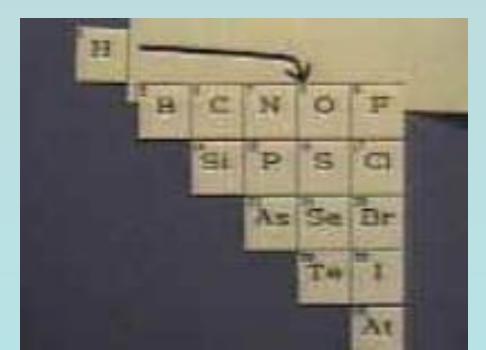
Writing Chemical Formulas using the Criss-Cross Method

- The numerical value of the charge of each ion (oxidation state) is crossed over and becomes the subscript for the other ion.
- Notice that the signs of the charges are dropped.
- The formula is correct because the overall charge of the formula is zero, and the subscripts are expressed in the lowest whole-number ratio.

http://somup.com/cF6QITnnU5 (4:18)

Naming Covalent Molecules

- Covalently bonded molecules usually involve non-metals bonding with non-metals.
- Generally, the MORE electronegative element is listed SECOND because it draws the electrons more and becomes the "anion".
- e.g. Carbon dioxide \rightarrow carbon is named <u>first</u> because it is the less electronegative, <u>more "metallic</u>", than oxygen.


с	260	N	336	0	314	F	402	Γ
10	2.6	1	3.1	1	3.5	1	4.0	
	188		242		239		300	Γ
Si	1	Р		S	100	Cl	22	
de	1.9	do	2.2	del	2.6	100	3.2	L
	182		226		225		273	
Ge		As	1998	Se	199	Br		
100	1.9	de	2.0	de	2.5	1	2.9	L

Fluorine is always listed second (highest electronegativity).

e.g. Chlorate ion $(ClO_3)^{-1} \rightarrow Chlorine$ is listed first (less electronegative)

Naming Covalent Molecules

- Generally, one names the non-metals from left-to-right order as found on the periodic table, EXCEPT that you would have to squeeze hydrogen in between nitrogen and oxygen.
- Nitrogen trihydride (NH₃) \rightarrow (ammonia) nitrogen is named first, then hydrogen
- Dihydrogen monoxide (H_2O) \rightarrow (water) Hydrogen is named first.

Naming Covalent Molecules

Name the **NONMETAL** farthest to the left on the periodic table first. It is the <u>most metallic element</u>.

 CO_2 = carbon dioxide, not oxygen carbide

The second element is given an –ide ending.

 CO_2 = carbon dioxide, not carbon dioxygen

Prefixes are used to indicate how many atoms of each element are present in the compound.

*Mono** = one, ONLY used for the second element in compound; e.g. carbon monoxide, CO

 $Di = two; e.g. sulfur dioxide, SO_2$

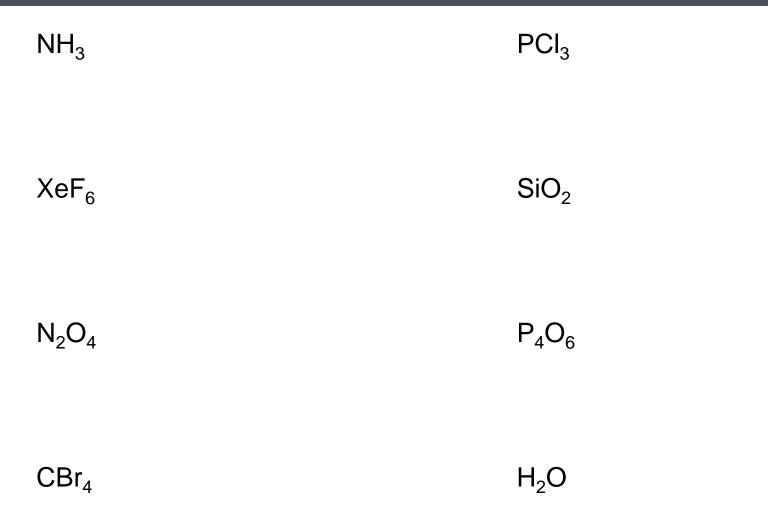
 $Tri = three; e.g. phosphorus trihydride, PH_3$

Tetra = four; e.g. carbon tetrachloride, CCI_4

Exceptions: Common Names & Hydrogen

Some common compounds that contain hydrogen have non-IUPAC names that do not indicate the number of hydrogen atoms (**related to acids**).

Examples:


- Hydrogen sulfide (H₂S)
- Hydrogen fluoride (HF)
- Hydrogen chloride (HCI)
- Hydrogen sulfate (H₂SO₄)

Some common (traditional) names are still used.

F	Formula	Common Name	IUPAC Name		
	H ₂ O	Water	dihydrogen monoxide		
	NH_3	Ammonia	nitrogen trihydride		
	NO	Nitric oxide	nitrogen monoxide		
	NO ₂	Nitrous oxide	nitrogen dioxide		
	PH_3	Phosphine	phosphorus trihydride		

Name the Covalent Molecules

Name the Covalent Molecules

NH₃ PCl₃ Ammonia, nitrogen trihydride phosphorus trichloride If there is only ONE of the 1st element, do not use "mono" SiO_2 XeF₆ xenon hexafluoride silicon dioxide N_2O_4 P_4O_6 tetraphosphorus hexaoxide dinitrogen tetroxide H_2O CBr₄

carbon tetrabromide

Water, dihydrogen monoxide

Expected Oxidation States of Atoms

Oxidation States

The number representing the charge of an atom when its valence is complete in the formation of a compound or molecule (octet rule).

Group	IA	IIA	IIIA	IVA	VA	VIA	VIIA
Valence	1	2	3	4	5	6	7
Expected Charge	+1	+2	+3	+/- 4	-3	-2	-1
	Lose 1 e-	Lose 2 e-	Lose 3 e-	Lose or gain 4 e-	Gain 3 e-	Gain 2 e-	Gain 1 e-

Naming Compounds with expected Oxidation States

Use the naming method we have been using: cation first, anion second with suffix of "-ide".

e.g. $K_3^+P^3 \rightarrow potassium phosphide$

Free Elements

The oxidation number is zero for all unbonded free elements \rightarrow this includes all the elements on the Periodic Table EXCEPT:

• These diatomic elements are considered free elements as well:

"HOFBrINCI" \rightarrow H₂ O₂ F₂ Br₂ I₂ N₂ Cl₂

"Charged" Atoms or lons

- Whenever a chemical reaction takes place, a free element must take on an "ionic" form as a cation or an anion
- The oxidation number of the "ion" produced in a chemical reaction is determined the same way as the oxidation state of an atom filling its valence (octet rule)

Oxygen

oxidation number = -2 exception: *peroxides* (e.g. H_2O_2) ... -1

Hydrogen

oxidation number = +1 exception: *hydrides* (e.g. NaH, CaH₂) ... -1

Many elements have multiple oxidation states that do not match the expected oxidation state based on valence.

- If the charge of the atom does not match the expected charge, assume a multiple oxidation state
- N is in Group V (gains 3 e-)... expected oxidation of N⁻³ N⁺⁵ N⁺⁴ N⁺³ N⁺² N⁻¹ N⁻² N⁻³

In order to distinguish between molecules containing an atom whose oxidation is not expected (like N), one needs a different name. E.g. imagine having triplets ... they each need their own name.

Determining NON-expected Oxidation States of Atoms

For a compound or molecule (electrically neutral overall), the sum of the oxidation numbers of all the elements must total ZERO. Carbon dioxide $CO_2 \rightarrow$

Carbon monoxide CO \rightarrow

Hydrogen Phosphate $H_3(PO_4)$

Determining NON-expected Oxidation States of Atoms

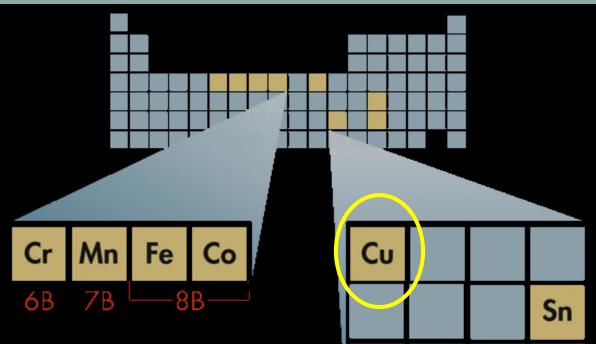
For a compound or molecule (electrically neutral overall), the sum of the oxidation numbers of all the elements must total ZERO.

Carbon dioxide $CO_2 \rightarrow Use$ "oxygen" as the standard for oxid. #

 C^{+4} + 20⁻² = 1(+4) + 2(-2) = 0

The total charge around oxygen is 2(-2) = -4

Therefore, C must have an oxidation of +4 when bonded


Carbon monoxide CO \rightarrow Use "oxygen" as the standard for oxid. # $C^{+2} + O^{-2} = 1(+2) + (-2) = 0$

The total charge around oxygen is 1(-2) = -2Therefore, C must have an oxidation of +2 when bonded

Hydrogen Phosphate $H_3(PO_4)$ Use "hydrogen" and "oxygen" as the standard for oxid. # $3H^{+1} + 1P^{+5} + 4O^{-2} = 3(+1) + 1(+5) + 4(-2) = 0$ The P atom must have an oxidation of +5 when bonded

Multiple Oxidation States of Atoms

<u>Transition metals</u> (Groups 1B–8B) typically form more than one cation with different ionic charges.

Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn			Hg	Pb
3	3,4	2, 3, 4, 5	2, 3, 4, 6	2, 3, 4, 6, 7	2, 3	2, 3	2	1,2	2		1 B	2B	4A
Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	b?			+201-	
3	4	3,4, 5	2,3,4, 5, 6	2,3,4, 5,6,7	2,3,4, 5,6,7, 8	1, 3	2,4	1	2		1	+ ² Cl ₂ -	
La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	>	Cu	+ <i>CI</i> -	
3	4	3, 4, 5	2,3,4, 5,6	2,3,4, 5,6,7	3,4,5, 6,7,8	1, 3	2,4	1, 3	1, 2				

Naming Molecules containing atoms with Multiple Oxidation States

Binary Molecules

Covalently bonded molecules usually have multiple oxidation states

• Commonly found with N, S, and P

OPTION 1 \rightarrow IUPAC naming system

Use a **Roman Numeral** to indicate the oxidation of the <u>most</u> <u>metallic element</u> which has the multiple oxidation state ("Stock" system)

N ₂ ⁺¹ O ⁻²	
N ₂ +3O ₃ -2	
N ₂ +5O ₅ -2	

The expected					
oxidation for $N = -3$					

Naming Molecules containing atoms with Multiple Oxidation States

Binary Molecules

Covalently bonded molecules usually have multiple oxidation states

• Commonly found with N, S, and P

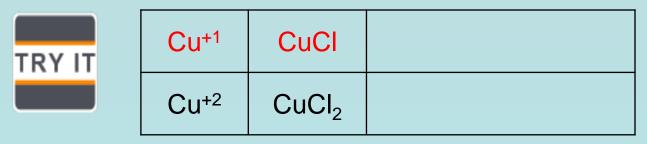
OPTION 1 \rightarrow IUPAC naming system

Use a **Roman Numeral** to indicate the oxidation of the <u>most</u> <u>metallic element</u> which has the multiple oxidation state ("Stock" system)

N ₂ ⁺¹ O ⁻²	Nitrogen I Oxide
N ₂ +3O ₃ -2	Nitrogen III Oxide
N ₂ +5O ₅ -2	Nitrogen V Oxide

The expected oxidation for N = -3

Naming Compounds containing atoms with Multiple Oxidation States


Binary Compounds

 Transition Elements usually exhibit multiple oxidation due to the filling of "d" and "f" sublevel orbitals

OPTION 1 \rightarrow IUPAC naming system

Use a **Roman Numeral** to indicate the oxidation of the <u>most</u> <u>metallic element</u> which has the multiple oxidation state ("Stock" system)

Containing Transition Metals

Naming Compounds containing atoms with Multiple Oxidation States

Binary Compounds

• Transition Elements usually exhibit multiple oxidation due to the filling of "d" and "f" sublevel orbitals

OPTION 1 \rightarrow IUPAC naming system

Use a **Roman Numeral** to indicate the oxidation of the metallic element which has the multiple oxidation state ("Stock" system)

Containing Transition Metals

Cu ⁺¹	CuCl	Copper(I) Chloride
Cu ⁺²	CuCl ₂	Copper(II) Chloride

Naming Molecules containing atoms with Multiple Oxidation States

Binary Molecules OPTION 2 → Greek prefixes

Add a prefix to <u>EACH</u> element, indicating the number of atoms of a particular element within the compound or molecule

mono- 1	tri- 3	tetra- 4	penta- 5	hexa- 6	hepta- 7	octa- 8
		Covale	nt Molecu	iles		
	N ₂ +1	O ⁻²				
	N ₂ +3(D ₃ -2				
	N ₂ +5(D ₅ -2				

Naming Molecules containing atoms with Multiple Oxidation States

Binary Molecules OPTION 2 → Greek prefixes

n

Add a prefix to <u>EACH</u> element, indicating the number of atoms of a particular element within the compound or molecule

mono- 1	di- 2		tetra- 4	penta- 5	hexa- 6	hepta- 7	octa- 8
			Covale	ent Molecu	iles		
		N ₂ ⁺¹	O-2	diNitroger	n monOxic	le	
		N ₂ +30	D ₃ -2	diNitroge	en triOxide	;	
		N ₂ +50	D ₅ -2	diNitroger	n pentOxic	le	

Naming Compounds containing atoms with Multiple Oxidation States

OPTION 3 → Transition Elements

Transition elements are characterized by their multiple oxidations "-OUS" and "-IC" ("Classical" Naming)

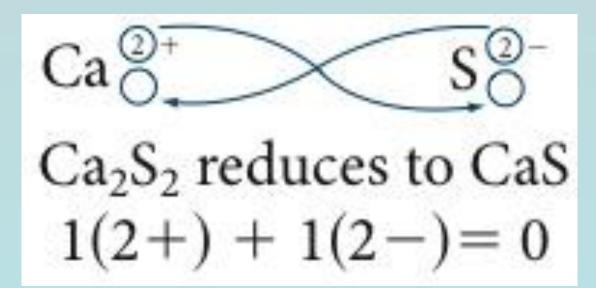
- Use "-ous" for the first oxidation number listed
- Use "-ic" for the second oxidation number listed

lon	Formula	Option 3	Option 1
Cu ⁺¹	CuCl	Cuprous Chloride	Copper I Chloride
Cu ⁺²	CuCl ₂	Cupric Chloride	Copper II Chloride
Hg ⁺¹	Hg ₂ Cl ₂	Mercurous Chloride	Mercury I Chloride
Hg ⁺²	HgCl ₂	Mercuric Chloride	Mercury II Chloride
Fe ⁺²	FeCl ₂	Ferrous Chloride	Iron II Chloride
Fe ⁺³	FeCl ₃	Ferric Chloride	Iron III Chloride
Co ⁺²	CoCl ₂	Cobaltous Chloride	Cobalt II Chloride
Co ⁺³	CoCl ₃	Cobaltic Chloride	Cobalt III Chloride
Pb ⁺²	PbCl ₂	Plumbous Chloride	Lead II Chloride
Pb ⁺⁴	PbCl ₄	Plumbic Chloride	Lead IV Chloride
Sn+2	SnCl ₂	Stannous Chloride	Tin II Chloride
Sn+4	SnCl ₄	Stannic Chloride	Tin IV Chloride

Naming Compounds containing atoms with Multiple Oxidation States

A few transition metals have only ONE ionic charge. The names of these cations do NOT have a Roman numeral.

These metals include the silver 1+ cation (Ag⁺) [Ag₂O \rightarrow silver oxide], & cadmium & zinc with 2+ cations (Cd²⁺ & Zn²⁺).


The "classical" naming system does not indicate oxidation states:

Symbols and Names of Common Metal Ions With More Than One Ionic Charge						
Symbol	Stock Name	Classical Name				
Cu⁺	Copper(I) ion	Cuprous ion				
Cu ²⁺	Copper(II) ion	Cupric ion				
Pb ²⁺	Lead(II) ion	Plumbous ion				
Pb ⁴⁺	Lead(IV) ion	Plumbic ion				

Empirical Formulas

For ionic compounds and many covalent molecules, formulas should be written with the LOWEST whole number ratio of atoms.

Calcium sulfide (Ca²⁺ and S²⁻) \rightarrow Ca₂S₂.

The 2:2 ratio can be reduced to CaS.

This is called an empirical formula.

The remainder of the slides are for review.

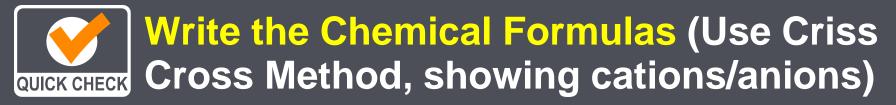
Bonding Elements	Name of Compound	
Sodium + Sulfur		QUICK CHECK
Calcium + Fluorine		
Oxygen + Silver		
Chlorine + Magnesium		
Lithium + Nitrogen		
Strontium + Sulfur		
Barium + Bromine		
Oxygen + Potassium		
Copper (+2) + Sulfur		
Copper (+1) + Sulfur		
Iron (+2) + Oxygen		
Iron (+3) + Oxygen		

Bonding Elements	Name of Compound	
Sodium + Sulfur	Sodium sulfide	QUICK CHECK
Calcium + Fluorine	Calcium fluoride	
Oxygen + Silver	Silver oxide (Ag only has 1 oxid. #)	
Chlorine + Magnesium	Magnesium chloride	
Lithium + Nitrogen	Lithium nitride	
Strontium + Sulfur	Strontium sulfide	
Barium + Bromine	Barium bromide	
Oxygen + Potassium	Potassium oxide	
Copper (+2) + Sulfur	Copper(II) sulfide, cupric sulfide	
Copper (+1) + Sulfur	Copper(I) sulfide, cuprous sulfide	
Iron (+2) + Oxygen	Iron(II) oxide, Ferrous Oxide	
Iron (+3) + Oxygen	Iron(III) oxide, Ferric Oxide	

Sodium oxide

Copper(I) nitrate

Barium phosphide


Manganese(IV) sulfate

Potassium chloride

Ammonium phosphate

Lithium sulfide

Cobalt(II) chloride

Sodium oxide

 $Na_2^+O^{-2} \rightarrow Na_2O$

Barium phosphide

 $Ba_3^{+2}P_2^{-3} \rightarrow Ba_3P_2$

Potassium chloride

 $K^+CI^- \rightarrow KCI$

Lithium sulfide

 $\text{Li}_2^+\text{S}^{-2} \rightarrow \text{Li}_2\text{S}$

Copper(I) nitrate $Cu^{+}(NO_3)^{-} \rightarrow Cu(NO_3)$ Manganese(IV) sulfate $Mn_2^{+4}(SO_4)_4^{-2} \rightarrow Mn(SO_4)_2$ Ammonium phosphate $(NH_4)_3^+(PO_4)^{-3} \rightarrow (NH_4)_3(PO_4)$ Cobalt(II) chloride $Co^{+2}Cl_2^{-2} \rightarrow CoCl_2$

Ionic compounds do not need special naming, but transition elements do.

Name the Following Ionic Compounds

 $Fe_2(SO_4)_3$

 B_2O_3

CsF

BaS

 Na_3N

 $Mn(NO_3)_2$

 Cu_2CO_3

 NH_4I

Na₃PO₄

Name the Following lonic Compounds

 $MgCl_2$

magnesium chloride

 B_2O_3

boron oxide

CsF

cesium fluoride

BaS

barium sulfide

 Na_3N

sodium nitride

 $Fe_{2}^{+3}(SO_{4})_{3}$ iron(III) sulfate, Ferric sulfate $Mn^{+2}(NO_3)_2$ manganese(II) nitrate $Cu_{2}^{+1}CO_{3}$ copper(I) carbonate, cuprous carbonate NH₄I ammonium iodide Na₃PO₄ sodium phosphate

Ionic compounds do not need special naming, but transition elements do.

Determine the formula: use the criss-cross method with polyatomic ions, treating the polyatomic ion as ONE unit:

Calcium nitrate

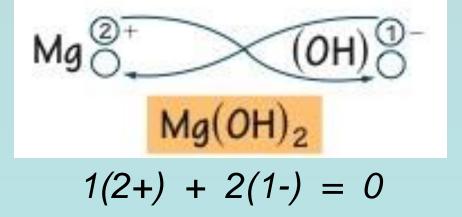
Lithium Carbonate

Magnesium Hydroxide

TRY IT

Compounds With Polyatomic Ions

Determine the formula: use the criss-cross method with polyatomic ions, treating the polyatomic ion as ONE unit:


 Ca_{0}^{+} (NO₃)₀⁻ Ca(NO₃)₂ 1(2+) + 2(1-)= 0

Lithium Carbonate

Calcium nitrate

Magnesium Hydroxide

Li₂CO₃) + 1(2-) = 0

Oxidation State of Elements in Polyatomic Ions

Determine the oxidation state of the elements in a polyatomic ion:

- Nitrate $(NO_3)^{-1}$...
- Carbonate $(CO_3)^{-2}$...
- Chlorite $(CIO_2)^{-1}$...
- Perphosphate (PO₅)⁻³...

TRY IT

The sum of the oxidation states of elements in a polyatomic ion equals the charge given:

Oxygen's oxidation is -2 in each case. Nitrate $(NO_3)^{-1} \dots N + 3(-2) = -1 \dots$ therefore, N+5

Carbonate $(CO_3)^{-2} \dots C + 3(-2) = -2 \dots$ therefore, C+4

Chlorite $(CIO_2)^{-1} \dots C + 2(-2) = -1 \dots$ therefore, CI+3

Perphosphate $(PO_5)^{-3} \dots P + 5(-2) = -3 \dots P^{+7}$

Name the Covalent Compounds or Give the Formula

 NI_3

SulfurVI Fluoride

 CS_2

 N_4O

Dinitrogen tetroxide

Diphosphorous pentoxide

CarbonII Oxide

 H_2O

Name the Covalent Compounds or Give the Formula

TRY IT

NI₃ Nitrogen tri-iodide

SulfurVI Fluoride

 $S^{+6}F_{6}^{-1}$

Dinitrogen tetroxide

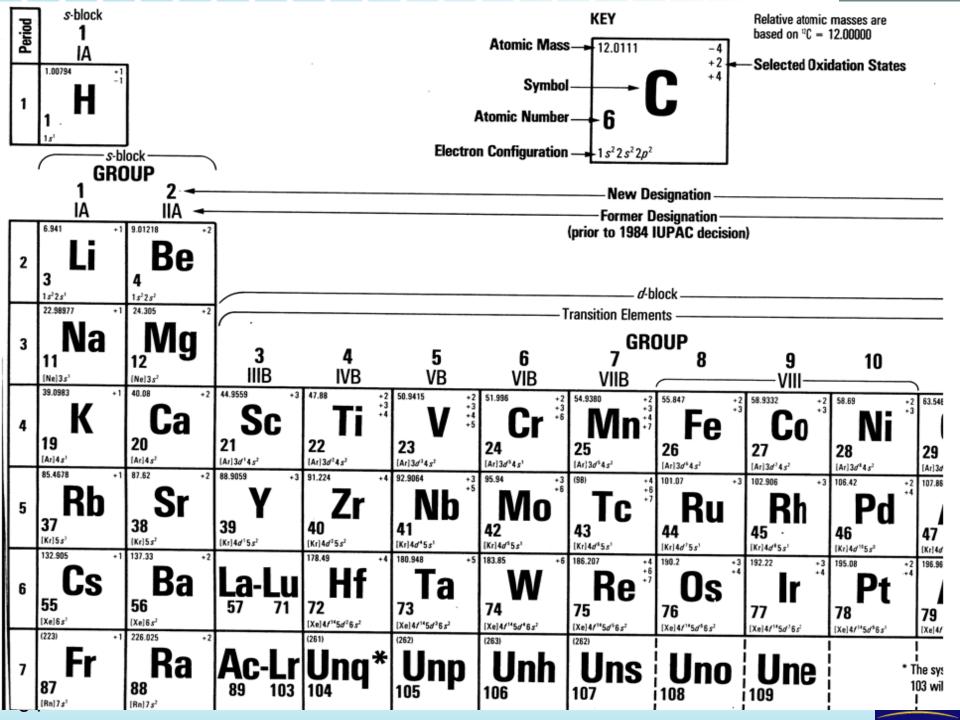
 N_2O_4

CarbonII Oxide C⁺²O⁻² (carbon monoxide) N_4O

Tetranitrogen monoxide

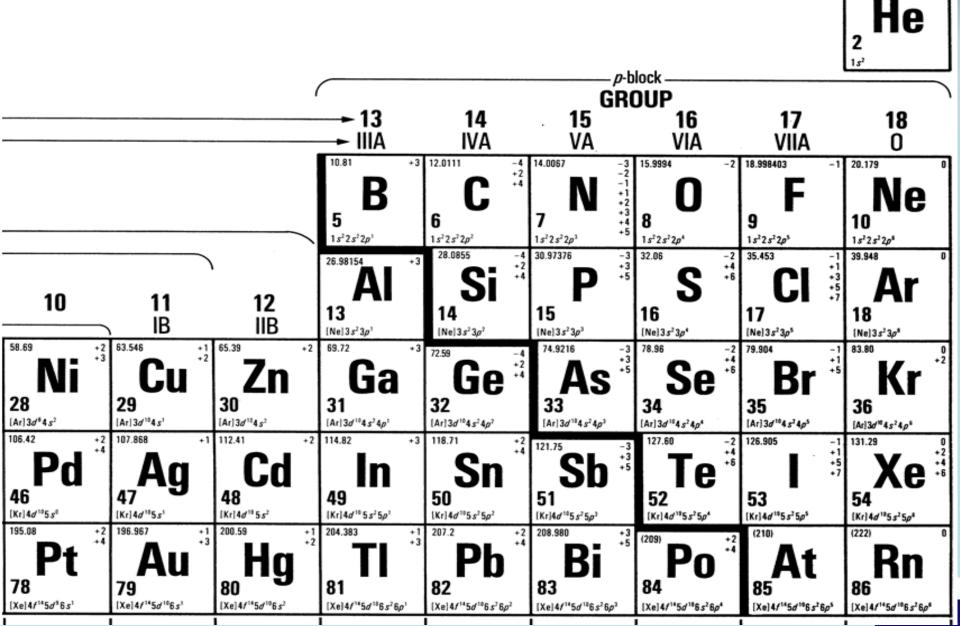
CS₂ Carbon disulfide

Diphosphorous pentoxide P_2O_5


H₂O Dihydrogen monoxide

Elements	Formula	Name of Compound	
Sodium, Sulfur			
Calcium, Fluorine			TRY IT
Silver, Oxygen			
Magnesium, Chlorine			
Lithium, Nitrogen			
Strontium, Sulfur			
Barium, Bromine			
Potassium, Oxygen			
Copper (+2), Sulfur			
Copper (+1), Sulfur			
Iron (+2), Oxygen			
Iron (+3) Oxygen			
Aluminum, Chlorine			
Aluminum, Sulfur			
Ammonium, Sulfur			
Copper (+2), Nitrate			
Calcium, Phosphate			
Potassium, Chlorine			
Hydrogen, Oxygen			
Lead (+2), Oxygen			
Sodium, Hydroxide			
Ammonium, Sulfate			
Zinc, Acetate			
Barium, Chlorate]

Elements	Formula	Name of Compound	
Sodium, Sulfur	Na2 ⁺¹ S ⁻²	Sodium sulfide	TRY IT
Calcium, Fluorine	Ca ⁺² F ₂ ⁻¹	Calcium fluoride	
Silver, Oxygen	Ag ₂ +1O-2	Silver oxide	
Magnesium, Chlorine	Mg ⁺² Cl ₂ ⁻¹	Magnesium chloride	
Lithium, Nitrogen	Li ₃ +1N-3	Lithium nitride	
Strontium, Sulfur	Sr+2S-2	Strontium sulfide	
Barium, Bromine	Ba ⁺² Br ₂ ⁻¹	Barium bromide	
Potassium, Oxygen	K ₂ ⁺¹ O ⁻²	Potassium oxide	
Copper (+2), Sulfur	Cu ⁺² S ⁻²	Copper(II) sulfide, cupric sulfide	
Copper (+1), Sulfur	Cu ₂ +1S-2	Copper(I) sulfide, cuprous sulfide	
Iron (+2), Oxygen	Fe ⁺² O ⁻²	Iron(II) oxide, Ferrous Oxide	
Iron (+3) Oxygen	Fe ₂ +3O ₃ -2	Iron(III) oxide, Ferric Oxide	
Aluminum, Chlorine	Al+ ³ Cl ₃ ⁻¹	Aluminum chloride	
Aluminum, Sulfur	Al ₂ +3S ₃ -2	Aluminum sulfide	
Ammonium, Sulfur	(NH ₄) ₂ ⁺¹ S ⁻²	Ammonium sulfide	
Copper (+2), Nitrate	Cu ⁺² (NO ₃) ₂ ⁻¹	Copper(II) nitrate, cupric nitrate	
Calcium, Phosphate	Ca ₃ ⁺² (PO ₄) ₂ ⁻³	Calcium phosphate	
Potassium, Chlorine	K ⁺¹ Cl ⁻¹	Potassium chloride	
Hydrogen, Oxygen	H ₂ ⁺¹ O ⁻²	diHydrogen monoxide, water	
Lead (+2), Oxygen	Pb+2O-2	Plumbous oxide	
Sodium, Hydroxide	Na ⁺¹ (OH) ⁻¹	Sodium hydroxide	
Ammonium, Sulfate	(NH ₄) ₂ ⁺¹ (SO ₄) ⁻²	Ammonium sulfate	
Zinc, Acetate	$Zn^{+1}(C_2H_3O_2)_2^{-1}$	Zinc acetate	
Barium, Chlorate	Ba ⁺² (ClO ₃) ₂ ⁻¹	Barium chlorate	


General guidelines for writing the name and formula of a chemical compound:

- 1. Follow the rules for naming acids when H is the first element in the formula and it is aqueous (dissolved in water).
- 2. If the compound is binary, generally the non-metal name ends with the suffix *-ide*.
- 3. If the compound is a molecular (covalently bonded) binary compound, use prefixes to indicate the number of atoms.
- 4. When a polyatomic ion that includes oxygen is in the formula, the compound name generally ends in *-ite* or *-ate*.
- 5. If the compound contains a metallic cation that can have different ionic charges (transition, group B metals), use a Roman numeral to indicate the numerical value of the ionic charge in the compound.

ation States

s-block

18 0

4.00260

Polyatomic Ions

Name	Formula	Name	Formula	
perPhosphate	$(PO_5)^{-3}$	perCarbonate	$(CO_4)^{-2}$	
Phosphate	$(PO_4)^{-3}$	Carbonate	$(CO_3)^{-2}$	
Phosphite	$(PO_3)^{-3}$	Carbonite	$(CO_2)^{-2}$	
hypoPhosphite	(PO ₂) ⁻³	hypocarbonite	(CO) ⁻²	
perChlorate	$(ClO_4)^{-1}$	perNitrate	(NO ₄) ⁻	
Chlorate	$(ClO_3)^{-1}$	Nitrate	$(NO_3)^{-1}$	
Chlorite	(ClO ₂) ⁻¹	Nitrite	(NO ₂) ⁻	
hypoChlorite	(ClO) ⁻¹	Hyponitrite	(NO) ⁻	Ammonium
perSulfate	$(SO_5)^{-2}$	perChromate	$(CrO_5)^{-2}$	$(NH_4)^{+1}$
Sulfate	(SO ₄) ⁻²	Chromate	(CrO ₄) ⁻²	
Sulfite	(SO ₃) ⁻²	Chromite	(CrO ₃) ⁻²	
hyposulfite	(SO ₂ -2	Hypochromite	$(CrO_2)^{-2}$	
Acetate	$(C_2H_3O_2)^{-1}$	Cyanide	(CN) ⁻¹	
Hydroxide	(OH) ⁻¹	Manganate	$(MnO_4)^{-2}$	

IONIZATION ENERGIES AND ELECTRONEGATIVITIES															
1										18					
н	313 First Ionization Energy (kcal/mol of atoms) H 2.2									He	567				
1000000		1 2	2	1	13 14		1	15		16		17			
	125		215		191		260		336		314		402		497
Li	1.0	Be	1.5	В	2.0	с	2.6	N	3.1	0	3.5	F	4.0	Ne	
	119		176		138		188		242		239		300		363
Na	0.9	Mg	1.2	Al	1.5	Si	1.9	P	2.2	s	2.6	CI	3.2	Ar	
	100		141		138		182		226		225		273		323
к	0.8	Ca	1.0	Ga	1.6	Ge	1.9	As	2.0	Se	2.5	Br	2.9	Kr	
	96		131		133		169		199		208		241		280
Rb	0.8	Sr	1.0	In	1.7	Sn	1.8	Sb	2.1	Te	2.3	I	2.7	Xe	
	90	4	120		141		171		168		194				248
Cs	0.7	Ba	0.9	TI	1.8	Pb	1.8	Bi	1.9	Ро	2.0	At	2.2	Rn	
Fr	0.7	Ra	122 0.9		bitrar	y sca	ale ba	sed o	on fluo	orine	; = 4	.0			

I

....