Go to the "Slide Show" shade above

Click on "Play from Beginning"

Intro to Biology

Chapter 4: Introduction to the Cell and Cell Membrane

Review & Assess What You Know

Every living organism:

Choose the statements below that are **true**. *Check all that apply*.

- [] Cells are the smallest unit of life.
- [] Cells are important to the structure and function of living things.
- [] All organisms are made of multiple cells.
- [] Cells come in different shapes and sizes.

Review & Assess What You Know

Every living organism:

- has cells with DNA
- uses energy
- reproduces
- Maintains homeostasis
- responds to the environment
- grows and develops

Choose the statements below that are **true**. *Check all that apply.*

- [X] Cells are the smallest unit of life.
- [X] Cells are important to the structure and function of living things.
- [] All organisms are made of multiple cells.
- [X] Cells come in different shapes and sizes.

Lesson Objectives

- By the end of this lesson, you should be able to:
 - Describe basic structures in all cells and state the cell theory.
 - Compare and contrast prokaryotic and eukaryotic cells.
 - Describe the anatomy and function of the cell membrane.
 - Differentiate between diffusion, osmosis, passive transport, and active transport.
 - Science Practice: Osmosis in an Egg

Identify Cell Structures

Which cell structures are seen in all types of cells? Check all that apply.

- [] membrane bound organelles
- []DNA
- [] cytoplasm
- [] nucleus
- [] ribosomes
- [] cell membrane

Organisms that contain more than one cell with internal membranebound structures are known as (Prokaryotes / Eukaryotes).

Organisms that contain only one cell and do not contain a nucleus or internal membrane-bound structures are known as (Prokaryotes / Eukaryotes).

Identify Cell Structures

- Which cell structures are seen in all types of cells? Check all that apply.
- [] membrane bound organelles
- [X] DNA
- [x] cytoplasm
- [] nucleus
- [x] ribosomes
- [x] cell membrane

- Organisms that contain more than one cell with internal membranebound structures are known as Eukaryotes.
- Organisms that contain only one cell and do not contain a nucleus or internal membrane-bound structures are known as Prokaryotes.

First to View Cells

- In 1665, Robert Hooke used a microscope to examine a thin slice of cork (dead plant cell walls).
- What he saw what looked like the small rooms monks used to live in →
 Cells.

- a) All living things are made of **CELLS**.
- b) Cells are the **basic units** of structure and function for all Life.
- c) All Cells are produced from other living cells.

Cells: The Basic Unit of Life

• A cell is the basic unit of structure and function of all organisms.

• Human skin cells

Human blood cells

Cells: The Basic Unit of Life

• All organisms are made of cells.

Unicellular: Composed of one cell Multicellular: Composed of many cells

Cells: The Basic Unit of Life

• All cells come from preexisting cells.

One of the major flaws of evolution is that ultimately life comes from non-life.

Cells are diverse in shape, size, and function:

The Cell

Number of Cells

Organisms may be:
Unicellular – composed of one cell.
Multicellular - composed of many cells that may organize into tissues, organs, etc.

The Cell

Common Features of All Cells

- Cell Membrane: Barrier around the cell that protects it from the outside world.
- Organelles:

Separate units inside of cells which perform certain functions.

Contain DNA

Common Features of All Cells

Cell membrane-

An organelle that provides a protective layer around the cell and controls what enters and leaves the cell.

Cytoplasm A jelly-like substance that supports and protects organelles in the cell.

DNA

A nucleic acid that contains the genetic information for heredity in most organisms.

Ribosomes

Organelles that produce proteins for the cell.

- Cells that <u>lack a nucleus</u> and <u>membrane-</u> <u>bound organelles.</u>
- Includes Eubacteria and Archaebacteria.
- Simplest type of cell.
- Single, circular chromosome.

The Cell

Prokaryotic Cells

- Nucleoid Region (center) contains the DNA in the cytoplasm.
- Surrounded by Cell Membrane and Cell Wall.
- No membrane-bound organelles.
- Contain <u>Ribosomes</u> in their <u>Cytoplasm</u> to make proteins.

18

The Cell

Eukaryotic Cells

- Cells that HAVE a nucleus and membrane-bound + non-membrane bound organelles.
- Includes protists, fungi, plants, & animals.
- More complex type of cells.

Two Main Types of Eukaryotic Cells

Typical animal cell and plant cell

Animal Cell (No Cell Walls)

Plant Cell

Summary of the Difference Between Eukaryotic and Prokaryotic Cells

21

Feature	Prokaryote	Eukaryote
Cell (Plasma) Membrane	?	?
Nucleus	?	?
Nuclear Material	?	?
Organelles (with or without membranes)	?	?
Cell Wall	?	Animals – ? Plants - ?
Cytoplasm	?	?
The Cell	Figure 4.7.2	

Figure 4.7.2

Summary of the Difference Between Eukaryotic and Prokaryotic Cells

Feature	Prokaryote	Eukaryote	
Cell (Plasma) Membrane	Yes; All	Yes; All	
Nucleus	No	Yes; All	
Nuclear Material	Not a true nucleus; DNA free-floating in Nucleoid Area of the cytoplasm	Inside membrane-bound Nucleus; In the form of Chromosomes	
Organelles	No membrane-bound organelles Only non-membrane bound (e.g. Ribosomes)	Complex organelles with and without membranes	
Cell Wall	Yes, some Animals – No Plants - Yes		
Cytoplasm	Yes	Yes	

The Cell

Figure 4.7.2

Cell Membrane

- Made up mostly of lipids and proteins.
- Outer boundary of the cell.
- Regulates which molecules can get in and out of the cell (selectively permeable).
- Helps with Cell to Cell recognition.

Cell Membrane

Main Components:

- Double Layer of Phospholipids
- Proteins
- Carbohydrates

Membrane Components

Phospholipids

- Heads contain glycerol and phosphate and are hydrophilic (attract water).
- Tails are made of fatty acids and are hydrophobic (repel water).
- Make up a bilayer where tails point inward toward each other.
- This makes the membrane Selective" in what crosses it.

The Cell

FLUID because individual phospholipids and proteins can move side-to-side within the layer, like a liquid.

MOSAIC because of the pattern produced by the scattered protein molecules when the membrane is viewed from above.

Cell Membrane Proteins

- Proteins help move large molecules in and out of the cell or aid in cell recognition.
- Peripheral proteins are attached on the surface (inner or outer).
- Integral proteins are embedded completely through the membrane.
 - Function as channel to regulate movement of substances in and out of the cell.

Semipermeable Membrane

In general, small, non-charged, hydrophobic molecules that are soluble in lipids can pass through the cell membrane easily.

E.g. O₂, CO₂, Alcohol

Semipermeable Membrane

 Ions, hydrophilic, and polar molecules such as glucose and proteins (amino acids) do not move through the membrane on their own.

Types of Transport Across Cell Membranes

simple diffusion

Materials move down their concentration gradient through the phospholipid bilayer.

Passive Transport: Simple Diffusion

- Does not require energy.
 - Moves from high to low concentration.
 - "Down" a concentration gradient

Example: Oxygen diffusing into a cell.

Diffusion through a Membrane

Diffusion

Solute moves DOWN the concentration gradient from HIGH to LOW.

E.g.: Oxygen

How Diffusion Works (1:29) http://somup.com/c3eir7Tv0j

facilitated diffusion

The passage of materials is aided both by a concentration gradient and by a transport protein.

Passive Transport: Facilitated Diffusion

- Does not require energy.
- Uses <u>transport proteins</u> to move high to low concentration.

E.g.: Glucose moving from blood into a cell.

How facilitated diffusion works http://somup.com/c3eir8Tv0z (1:17)

The Cell

Passive Transport: Osmosis

- Diffusion of <u>WATER</u> across a semiperneable
- Membrane permeable only to water.
- Flows from HIGH water potential or concentration (LOW solute concentration) to LOW water potential or concentration (HIGH solute concentration).
- Passive Transport (No energy required).

TONICITY \rightarrow the relative concentration of **SOLUTE** (particles) <u>OUTSIDE</u> the cell compared with the inside of the cell.

Diffusion of H₂O Across A Membrane

High H₂O potential or concentration

Low Solute concentration

Low H₂O potential or concentration

High Solute concentration

What is the direction of water movement?

What is the direction of water movement?

Animal Cell in Hypotonic Solution

What is the direction of water movement?

Animal Cell in Hypotonic Solution

What is the direction of water movement?

"hypo-" means LOWER solute OUTSIDE the cell; more water inside the cell.

Animal Cell in Hypertonic Solution

What is the direction of water movement?

The Cell

Animal Cell in Hypertonic Solution

What is the direction of water movement?

"hyper-" means HIGHER solute OUTSIDE the cell; lower water inside the cell.

Describe the diffusion of H₂O across the Membrane

Give the tonicity of each situation

? H₂O potential or concentration ? Solute concentration ? H₂O potential or concentration ? Solute concentration ? H₂O potential or concentration ? Solute concentration

Describe the diffusion of H₂O across the Membrane

LOW H₂O potential or concentration HIGH Solute concentration OUTSIDE cell EQUAL H₂O potential or concentration EQUAL Solute concentration OUTSIDE cell HIGH H₂O potential or concentration LOW Solute concentration OUTSIDE cell

Active transport

Molecules again move through a transport protein, but now energy must be expended to move them against their concentration gradient.

Active Transport

- Requires energy or ATP.
- Requires a Protein Carrier.
- Moves materials from LOW to HIGH concentration.
- Flows AGAINST the concentration gradient.

Active Transport

In cells, the use of energy (ATP) by the cell to move particles AGAINST the concentration gradient from an area of LOW concentration to an area HIGH concentration.

Three Forms of Transport Across the Membrane

Give the type of transport in each cell?

Materials move down their concentration gradient through the Give the type of diffusion

Materials move down their concentration gradient aided by a transport _____.

Molecules move through a transport protein _____ the concentration gradient, requiring _____.

Three Forms of Transport Across the Membrane

Materials move down their concentration gradient through the phospholipid bilayer. facilitated diffusion

Materials move down their concentration gradient aided by a transport protein.

Active transport

Molecules move through a transport protein AGAINST the concentration gradient, requiring ENERGY.

EXOCYTOSIS

Moving the "Big Stuff"

- Molecules are moved out of the cell by vesicles that fuse with the plasma membrane.
- This is how many hormones are secreted and how nerve cells communicate with one another through neurotransmitters.

Moving the "Big Stuff"

Molecules move INTO the cell by ENDOCYTOSIS.

Endocytosis: Pinocytosis

(a) Pinocytosis

Cell moves large quantities of fluid (or SMALLER particles) INTO the cell.

Used to engulf <u>large</u> particles such as food, bacteria, etc. into vesicles and bring into cell.

Phagocytosis About to Occur

Endocytosis & Exocytosis (1:40) tp://somup.com/c3ei3cTv0

Summary of Transport Mechanisms

General Mode of Transport	Examples	Energy Required	Movement
?	 D F Diffusion O 	?	Down Concentration
?	 Membrane Pumps 	?	Concentration Gradient
Cytosis	Leave cell ?Small/fluid ?Large ?	?	Down or Against Concentration Gradient

Summary of Transport Mechanisms

General Mode of Transport	Examples	Energy Required	Movement
Passive	 Diffusion Facilitated Diffusion Osmosis 	No	Down Concentration Gradient
Active	 Membrane Pumps 	Yes	Against Concentration Gradient
Cytosis	ExocytosisPinocytosisPhagocytosis	Yes	Down or Against Concentration Gradient