Sample Problems

- 1. Redox reactions (look at the change in oxidation states)
 - a. Na is oxidized (Na⁰ \rightarrow Na⁺), making it the reducing agent S is reduced (S⁰ \rightarrow S⁻²), making it the oxidizing agent
 - b. Al is oxidized (Al⁰ \rightarrow Al⁺³), making it the reducing agent O is reduced (O₂⁰ \rightarrow 2O⁻²), making it the oxidizing agent
- 2. Redox reactions (look at the change in oxidation states)
 - a. oxidization ($Li^0 \rightarrow Li^+$) ... increase in oxidation state
 - b. oxidation $(2I^{-} \rightarrow I_2^{0}) \dots$ increase in oxidation state
 - c. reduction $(Zn^{+2} \rightarrow Zn^0)$... decrease in oxidation state
 - d. reduction (Br₂⁰ \rightarrow 2Br⁻) ... decrease in oxidation state

Lesson Check Answers

- Oxidation is the gain of oxygen. Reduction is the loss of oxygen.
- Oxidation is the loss of electrons. Reduction is the gain of electrons.
- Salts and acids produce conductive solutions that make electron transfer easier.
- The species reduced is the oxidizing agent. The species oxidized is the reducing agent.
- 7. The oxidizing agent gets reduced (decreased oxidation state/gain e-); the reducing agent gets oxidized (increased oxidation state/lose e-)
 - a. Cl_2^0 is likely to get reduced to $2Cl^{-1}$ by gaining e- \rightarrow oxidizing agent
 - b. K is likely to get oxidized to K^+ by losing e- \rightarrow reducing agent
 - c. Ag⁺ is likely to get reduced to Ag⁰ by gaining e- \rightarrow oxidizing agent

8 & 9.

The oxidizing agent gets reduced (decreased oxidation state/gain e-); the reducing agent gets oxidized (increased oxidation state/lose e-)

- a. Na is oxidized (Na⁰ \rightarrow Na⁺) by losing an e-; reducing agent Br₂ is reduced (Br₂⁰ \rightarrow 2Br⁻) by gaining 2 e-; oxidizing agent
- b. H₂ is oxidized (H₂⁰ \rightarrow 2H⁺) by losing 2 e-; reducing agent Cl₂ is reduced (Cl₂⁰ \rightarrow 2Cl⁻) by gaining 2 e-; oxidizing agent
- c. Li is oxidized (Li⁰ \rightarrow Li⁺) by losing an e-; reducing agent F_2 is reduced ($F_2^0 \rightarrow 2F^-$) by gaining 2 e-; oxidizing agent
- d. S is oxidized (S⁰ \rightarrow S⁺²) by losing 2 e-; reducing agent Cl₂ is reduced (Cl₂⁰ \rightarrow 2Cl⁻) by gaining 2 e-; oxidizing agent
- e. N₂ is oxidized (N₂⁰ \rightarrow N⁺⁴) by losing 4 e-; reducing agent O₂ is reduced (O₂⁰ \rightarrow O⁻²) by gaining 2 e-; oxidizing agent
- f. Mg is oxidized (Mg⁰ \rightarrow Mg⁺²) by losing an e-; reducing agent Cu is reduced (Cu⁺² \rightarrow Cu⁰) by gaining 2 e-; oxidizing agent

Sample Problems

12 & 13.

The oxidizing agent gets reduced (decreased oxidation state/gain e-); the reducing agent gets oxidized (increased oxidation state/lose e-)

a. H₂ is oxidized (H₂⁰ \rightarrow 2H⁺) by losing 2 e-; reducing agent O₂ is reduced (O₂⁰ \rightarrow O⁻²) by gaining 2 e-; oxidizing agent

- b. O₂ is oxidized (O⁻² \rightarrow O₂⁰) by losing 2 e-; reducing agent N is reduced (N⁺⁵ \rightarrow N^{+\$}) by gaining 2e-; oxidizing agent
 - FIGURE 20.9 The oxidation number of silver changes from +1 to 0; the oxidation number of copper changes from 0 to +2.
 - **14.** a. N in NH⁺₄ is oxidized (-3 to 0); H is unchanged; N in NO⁻₂ is reduced (+3 to 0); O is unchanged.
 - b. Pb is reduced (+4 to +2); O is unchanged; H is unchanged; I is oxidized (-1 in HI to 0 in I₂).
 - a. N in NH⁺₄ is the reducing agent; N in NO⁻₂ is the oxidizing agent.
 - b. Pb is the oxidizing agent; I is the reducing agent.
 - FIGURE 20.11 The oxidation number of potassium changes from 0 to +1, so this is a redox reaction. The oxidation number of zinc changes from 0 to +2, so this is a redox reaction.

Lesson Check Answers

- The oxidation number is the charge a bonded atom would have if the electrons in the bond were assigned to the more electronegative element.
- An increase in oxidation number indicates oxidation; a decrease in oxidation number indicates reduction.
- For a polyatomic ion, the sum of the oxidation numbers must equal the ionic charge of the ion.

- 19. a. Na, oxidized; Cl2, reduced
 - b. I, oxidized; N, reduced
 - c. S, oxidized; N, reduced
 - d. Pb, oxidized and reduced
- a. Na reducing agent, Cl₂ oxidizing agent
 - b. N in HNO₃ oxidizing agent, I in HI reducing agent
 - c. N in HNO₃, oxidizing agent; S in H₂S, reducing agent
 - Pb in PbSO₄, oxidizing-reducing agent

19 & 20.

The oxidizing agent gets reduced (decreased oxidation state/gain e-); the reducing agent gets oxidized (increased oxidation state/lose e-)

- a. Na is oxidized (Na⁰ \rightarrow Na⁺) by losing an e-; reducing agent Cl₂ is reduced (Cl₂⁰ \rightarrow 2Cl⁻) by gaining 2 e-; oxidizing agent
- b. I is oxidized $(2I^- \rightarrow I_2^0)$ by losing an 2 e-; reducing agent N is reduced $(N^{+5} \rightarrow N^{+2})$ by gaining 3e-; oxidizing agent
- c. S is oxidized (S⁻ \rightarrow S⁰) by losing an 2 e-; reducing agent N is reduced (N⁺⁵ \rightarrow N⁺²) by gaining 3e-; oxidizing agent
- d. $Pb^{+2}SO_4$ is oxidized and reduced Pb is oxidized ($Pb^{+2} \rightarrow Pb^{+4}$) by losing an e-; reducing agent Pb is reduced ($Pb^{+2} \rightarrow Pb^0$) by gaining 2 e-; oxidizing agent

Sample Problems

- 21a. This is a redox reaction. Mg is oxidized (Mg⁰ \rightarrow Mg⁺²) by losing 2 e-; reducing agent Br₂ is reduced (Br₂⁰ \rightarrow 2Br⁻) by gaining 2 e-; oxidizing agent
- 21b. This is NOT a redox reaction. No element changes oxidation state.
- 22a. This is NOT a redox reaction. No element changes oxidation state.
- 22b. This is a redox reaction.
 H₂ is oxidized (H₂⁰ → 2H⁺) by losing 2 e-; reducing agent Cu is reduced (Cu⁺² → Cu⁰) by gaining 2 e-; oxidizing agent
- 23-26. You may balance using either the oxidation-number method or the half reaction method.

23. a.
$$\operatorname{KClO_3(s)}^{+1+5-2} \longrightarrow \operatorname{KCl(s)}^{+1-1} + \operatorname{O}_2(g)$$

(3)(+2) = +6

One K atom must be reduced for every 3 oxygen atoms oxidized.

 $\operatorname{KClO}_3(s) \longrightarrow \operatorname{KCl}(s) + \operatorname{O}_2(g)$

Balance by inspection; put the coefficient 3 in front of O_2 , and the coefficient 2 in front of KClO₃ and KCl:

 $2\text{KClO}_3(s) \longrightarrow 2\text{KCl}(s) + 3\text{O}_2(g)$

 Cl^{+5} was reduced to Cl^{-1} ... that is an overall -6 drop.

 O^{-2} was oxidized to $O_2^0 \dots$ that is an overall +2 increase.

To account for the oxidation difference, use a common multiple.

b. $HN^{+3}O_2(aq) + HI^{-}(aq) \rightarrow I_2^{0}(s) + N^{+2}O(g) + H_2O(l)$ $Oxid \frac{1}{2} rxn: 2HI^{-}(aq) \rightarrow I_2^{0}(aq) + 2e$ - $Red \frac{1}{2} rxn: 2[HN^{+3}O_2(aq) + e \rightarrow N^{+2}O(g)]$

Rewrite the red ¹/₂ rxn to account for 2 e-: $2HN^{+3}O_2(aq) + 2 e \rightarrow 2N^{+2}O(g)$] Add to equation: $2HN^{+3}O_2(aq) + 2HI^{-}(aq) \rightarrow I_2^{0}(aq) + 2N^{+2}O(g) + H_2O(l)$ Balance overall equation (spectator ions) involving O, H. $2HN^{+3}O_2(aq) + 2HI^{-}(aq) \rightarrow I_2^{0}(aq) + 2N^{+2}O(g) + 2H_2O(l)$

24. a.
$$\operatorname{Bi}_{2}S_{3}(s) + \operatorname{HNO}_{3}(aq) \longrightarrow$$

Bi(NO₃)₃(aq) + NO(g) + S(s) + H₂O(l)
(3)(+2) = +6

2 N atoms must be reduced for every 3 sulfur atoms oxidized.

$$Bi_{2}S_{3}(s) + 2HNO_{3}(aq) \longrightarrow$$

Bi(NO_{3})_{3}(aq) + 2NO(g) + 3S(s) + H_{2}O(l)

Balance by inspection; put the coefficient 2 in front of $Bi(NO_3)_3$, the coefficient 8 in front of HNO_3 , and the coefficient 4 in front of H_2O :

$$Bi_2S_3(s) + 8HNO_3(aq) \longrightarrow$$

2Bi(NO_3)_3(aq) + 2NO(g) + 3S(s) + 4H_2O(l)

 N^{+5} was reduced to N^{+2} ... that is an overall -3 drop. S^{-2} was oxidized to S^{0} ... that is an overall +2 increase.

To account for the oxidation difference, use a common multiple.

25. Balance: $\operatorname{Sn}^{+2}(\operatorname{aq}) + \operatorname{Cr}_2 \operatorname{O_7}^{-2}(\operatorname{aq}) \xrightarrow{} \operatorname{Sn}^{+4}(\operatorname{aq}) + \operatorname{Cr}^{+3}(\operatorname{aq})$ Oxid ½ rxn: $3[\operatorname{Sn}^{+2}(\operatorname{aq}) \xrightarrow{} \operatorname{Sn}^{+4}(\operatorname{aq}) + 2 \operatorname{e-}]$ Red ½ rxn: $\operatorname{Cr}_2^{+6} \operatorname{O_7}^{-2}(\operatorname{aq}) + 6 \operatorname{e-} \xrightarrow{} 2\operatorname{Cr}^{+3}(\operatorname{aq})$ Rewrite the oxid ½ rxn to account for 6 e-: $3\operatorname{Sn}^{+2}(\operatorname{aq}) \xrightarrow{} 3\operatorname{Sn}^{+4}(\operatorname{aq}) + 6 \operatorname{e-}]$ Add to equation: $3\operatorname{Sn}^{+2}(\operatorname{aq}) + \operatorname{Cr}_2 \operatorname{O_7}^{-2}(\operatorname{aq}) \xrightarrow{} 3\operatorname{Sn}^{+4}(\operatorname{aq}) + 2\operatorname{Cr}^{+3}(\operatorname{aq})$ Balance overall equation (spectator ions) involving O, H. Since the reaction is acidic (H⁺ ions) and aqueous (H₂O), we add those elements in. $3\operatorname{Sn}^{+2}(\operatorname{aq}) + \operatorname{Cr}_2 \operatorname{O_7}^{-2}(\operatorname{aq}) + 14\operatorname{H}^{+} \xrightarrow{} 3\operatorname{Sn}^{+4}(\operatorname{aq}) + 2\operatorname{Cr}^{+3}(\operatorname{aq}) + 7\operatorname{H}_2 \operatorname{O}$ 26. Balance: $\operatorname{Zn}^{0}(s) + \operatorname{NO}_{3}(\operatorname{aq}) \rightarrow \operatorname{NH}_{3}(\operatorname{aq}) + \operatorname{Zn}(\operatorname{OH})_{4}(\operatorname{aq})^{-2}(\operatorname{aq})$ [basic solution] Oxid $\frac{1}{2}$ rxn: $4[\operatorname{Zn}^{0}(s) \rightarrow \operatorname{Zn}^{+2}(s) + 2 \text{ e-}]$ Red $\frac{1}{2}$ rxn: $\operatorname{N}^{+5}\operatorname{O}_{3}(\operatorname{aq}) + 8 \text{ e-} \rightarrow \operatorname{N}^{-3}\operatorname{H}_{3}(\operatorname{aq})$ *Rewrite the oxid* $\frac{1}{2}$ rxn to account for 8 e-: $4\operatorname{Zn}^{0}(s) \rightarrow 4\operatorname{Zn}^{+2}(s) + 8 \text{ e-}$ Add to equation: $4\operatorname{Zn}^{0}(s) + \operatorname{NO}_{3}(\operatorname{aq}) \rightarrow \operatorname{NH}_{3}(\operatorname{aq}) + 4\operatorname{Zn}(\operatorname{OH})_{4}(\operatorname{aq})$ *Balance overall equation (spectator ions) involving O, H. Since the reaction is basic (OH ions) and aqueous (H_{2}O), we add those elements in.*

 $4Zn^{0}(s) + NO_{3}(aq) + 6H_{2}O + 7OH \rightarrow NH_{3}(aq) + 4Zn(OH)_{4}(aq)$

Lesson Check Answers

- Reactions in which electrons are transferred from one reacting species to another (redox reactions) and reactions that do not involve a transfer of electrons.
- The oxidation-number-change method and the half-reaction method.
- 29-30. You may balance using either the oxidation-number method or the half reaction method.
- 29a. $ClO_3(aq) + I(aq) \rightarrow Cl(aq) + I_2(s)$ [acidic solution]

Oxid $\frac{1}{2}$ rxn: $3[2I^{-}(aq) \rightarrow I_{2}^{0}(aq) + 2e^{-}]$

Red $\frac{1}{2}$ rxn: Cl⁺⁵ + 6e- \rightarrow Cl⁻

Rewrite the oxid $\frac{1}{2}$ *rxn to account for* 6 *e*-: 6I⁻(aq) \rightarrow 3I₂⁰(aq)

Add to equation: $ClO_3^{-}(aq) + 6I^{-}(aq) \rightarrow Cl^{-}(aq) + 3I_2(s)$

Balance overall equation (spectator ions) involving O, H. Since the reaction is acidic (H^+ ions) and aqueous (H_2O), we add those elements in.

$$\text{ClO}_3(aq) + 6\text{I}(aq) + 6\text{H}(aq) \rightarrow \text{Cl}(aq) + 3\text{I}_2(s) + 3\text{H}_2O(l)$$

The acid (H^+ *ions*) *are with* I^- *ions on the reactant side.*

29b. $C_2O_4^{-2}(aq) + MnO_4^{-}(aq) \rightarrow Mn^{+2}(aq) + CO_2(g)$ [acidic solution] Oxid ¹/₂ rxn: $5[C^{+3}(aq) \rightarrow C^{+4}(aq) + e^{-}]$ Red ¹/₂ rxn: $Mn^{+7} + 5e^{-} \rightarrow Mn^{+2}$

Chemistry

Rewrite the oxid $\frac{1}{2}$ *rxn to account for* 5 *e*-: $5C^{+3}(aq) \rightarrow 5C^{+4}(aq) + 5e$ -Add to equation: $5C_2O_4^{-2}(aq) + 2MnO_4^{-}(aq) \rightarrow 2Mn^{+2}(aq) + 10CO_2(g) \dots$ *note that we had to double the amount of Carbons based on the equation. Therefore, we have to double the amount of manganese as well* $\rightarrow 10 e$ -

Balance overall equation (spectator ions) involving O, H. Since the reaction is acidic (H^+ ions) and aqueous (H_2O), we add those elements in. $5C_2O_4^{-2}(aq) + 2MnO_4^{-}(aq) + 16H^+(aq) \rightarrow 2Mn^{+2}(aq) + 10CO_2(g) + 8H_2O(l)$ The acid (H^+ ions) are with MnO₄⁻ ions on the reactant side.

29c. $Br_2(1) + SO_2(g) \rightarrow Br^{-}(aq) + SO_4^{-4}(aq)$ [acidic solution] $Oxid \frac{1}{2} rxn: S^{+4}(aq) \rightarrow S^{+6}(aq) + 2e$ - $Red \frac{1}{2} rxn: Br_2^0 + 2e \rightarrow 2Br^ Both \frac{1}{2} rxn involve 2 e$ - without changing coefficients Balance overall equation (spectator ions) involving O, H. Since the $reaction is acidic (H^+ ions) and aqueous (H_2O), we add those elements in.$ $Br_2(1) + SO_2(g) + 2H_2O(1) \rightarrow 2Br^-(aq) + SO_4^{-4}(aq) + 4H^+(aq)$ $The acid (H^+ ions) are with Br^- ions on the product side.$

30a. You do NOT have to answer 30a.

30b. Balance: NiO₂(s) + S₂O₃⁻²(aq) → Ni(OH)₂(s) + SO₃⁻²(aq) [basic solution] Oxid ¹⁄₂ rxn: S⁺² → S⁺⁴ + 2e-Red ¹⁄₂ rxn: Ni⁺⁴ + 2 e- → Ni⁺² Both ¹⁄₂ rxn involve 2 e- without changing coefficients Note that we had to double the amount of Sulfur based on the equation. Therefore, we have to double the amount of Nickel as well → 4 e-Add to equation: 2NiO₂(s) + S₂O₃(aq) → 2Ni(OH)₂(s) + SO₃⁻²(aq) Balance overall equation (spectator ions) involving O, H. Since the reaction is basic (OH⁻ ions) and aqueous (H₂O), we add those elements in. 2NiO₂(s) + S₂O₃⁻²(aq) + H₂O(1) + 2OH⁻(aq) → 2Ni(OH)₂(s) + 2SO₃⁻²(aq) The base (OH⁻ ions) are with the H⁺ ions of water on the reactant side. 31. Production of sodium: $2\text{NaCl}(l) \longrightarrow 2\text{Na}(l) + \text{Cl}_2(g)$

Cl₂ is oxidized (2Cl⁻ → Cl₂⁰) by losing 2 e-; reducing agent Na is reduced (Na⁺ → Na⁰) by gaining an e-; oxidizing agent

Production of bromine: $2NaBr(aq) + Cl_2(g) \longrightarrow 2NaCl(aq) + Br_2(l)$

Br⁻ is oxidized (2Br⁻ → Br₂⁰) by losing 2 e-; reducing agent Cl₂ is reduced (Cl₂⁰ → 2Cl⁻) by gaining 2 e-; oxidizing agent

Production of Iodine: $2NaIO_{3}(aq) + 5NaHSO_{3}(aq) \longrightarrow I_{2}(g) + 2Na_{2}SO_{4}(aq) + 3NaHSO_{4}(aq) + H_{2}O(l)$

S⁺⁴ is oxidized (S⁺⁴ \rightarrow S⁺⁶) by losing 2 e-; reducing agent I⁺⁵ is reduced (2I⁺⁵ \rightarrow I₂⁰) by gaining10 e-; oxidizing agent