

Chapter 5 The Periodic Table

Organizing the Elements

The Modern Periodic Table

Representative Groups

Periodic Table Focus Points

- Explain the history of the Periodic Table including the scientists who contributed to it (Mendeleev, Moseley).
- Describe the arrangement of the periodic table (periods, groups, periodic law, classes of elements) and its components (atomic mass, atomic number, element symbols).
- Classify elements into representative groups based on electron configuration for Valence (outer electrons that bond).

But there were some substances that you couldn't break down into anything else. These are the chemical *elements*.

Observe the items in all 24 squares below looking for similar characteristics.

Consider how to organize the items based on recognizable & sensible patterns.

Meat radio	Seafood microwave	Soup infrared	Dairy Visible ROY	Breads Visible GBIV	Vegetables ultraviolet	Pasta x-rays	Fruit gamma
Pork 0.5 lb radio	Salmon steak microwave	Beans 5 pods ultraviolet	Milk 1 gallon visible ROY	Grapes 1 twig gamma	Beef 0.25 lb radio	Tomato Soup 8 oz infrared	Rye 1 loaf visible GBIV
Stew 32 oz infrared	Spaghetti 1 pot x-rays	Bananas 1 bunch gamma	Clams 1 bushel microwave	Cheese 1 slice visible ROY	Celery 1 stalk ultraviolet	Eggs 1 dozen visible ROY	Barley 1 stalk visible GBIV
Chicken Noodle 16 oz infrared	Wheat flour 2 lbs visible GBIV	Shrimp Cocktail microwave	Rigatoni 1 bite x-rays	Chicken 1 lb radio	Apple 1 bushel gamma	Cucumber 1 plant ultraviolet	Macaroni 1 bowl x-rays

Periodic Table of Foods

Meat radio	Seafood microwave	Soup infrared	Dairy Visible ROY	Breads Visible GBIV	Vegetables ultraviolet	Pasta x-rays	Fruit gamma
Beef 0.25 lb	Shrimp cocktail	Tomato Soup 8 oz	Cheese 1 slice	Rye 1 loaf	Beans 5 pods	Rigatoni 1 bite	Grapes 1 twig
Pork 0.5 lb	Salmon steak	Chicken Noodle 16 oz	Eggs 1 dozen	Barley 1 stalk	Cucumber 1 plant	Macaroni 1 bowl	Bananas 1 bunch
Chicken 1.0 lb	Clams 1 bushel	Stew 32 oz	Milk 1 gallon	Wheat flour 2 lbs	Celery 1 stalk	Spaghetti 1 pot	Apple 1 bushel

What guidelines did you use to make your Periodic Table of Foods? How did you determine "Groups"?

How did you determine "Periods" or "Rows"?

Periodic Table of Foods

Meat radio	Seafood microwave	Soup infrared	Dairy Visible ROY	Breads Visible GBIV	Vegetables ultraviolet	Pasta x-rays	Fruit gamma
Beef 0.25 lb	Shrimp cocktail	Tomato Soup 8 oz	Cheese 1 slice	Rye 1 loaf	Beans 5 pods	Rigatoni 1 bite	Grapes 1 twig
Pork 0.5 lb	Salmon steak	Chicken Noodle 16 oz	Eggs 1 dozen	Barley 1 stalk	Cucumber 1 plant	Macaroni 1 bowl	Bananas 1 bunch
Chicken 1.0 lb	Clams 1 bushel	Stew 32 oz	Milk 1 gallon	Wheat flour 2 lbs	Celery 1 stalk	Spaghetti 1 pot	Apple 1 bushel

What guidelines did you use to make your Periodic Table of Foods? How did you determine "Groups"? *Food groups & EM radiation order* How did you determine "Periods" or "Rows"? *Amounts within each food group*

How was the periodic table developed and how is it arranged?

Reihen	Gruppo I. R*0	Gruppo 11. RO	Gruppe III. R*0*	Gruppe 1V. RH ⁴ RO ⁴	Gropps V. RH ^a R'0 ³	Grappe VI. RH ^a RO ³	Gruppo VII. RH R'0'	Gruppo Vill. R04
1	II=1							
2	Li=7	Be=9,4	B=11	C==12	N=14	0=16	F==19	
3	Na=23	Mg == 24	Al= 27,3	Si=28	P==31	8=32	Cl== 35,5	
4	K=39	Ca== 40	-==44	Ti=48	V aav 51	Cr=52	Mn=55	Fo=56, Co=59, Ni=59, Cu=63.
5	(Ca=63)	Zn==65	-=68	-=72	As=75	Se=78	Br== 80	
6	Rb == 85	Sr=87	?Yt=88	Zr == 90	Nb == 94	Mo≔96	-=100	Ru=104, Rh=104, Pd=106, Ag=108.
7	(Ag == 108)	Cd == 112	In == 113	Sa==118	Sb==122	Te == 125	J=127	
8	Cs== 133	Ba=137	?Di==138	?Ce==140	-	-	-	
9	(-)	- 1	-	-	-	-	- 1	
10	-	-	?Er== 178	?La=180	Ta == 182	W=184	-	Os=195, Ir=197, Pt=198, Au=199.
11	(Au == 199)	flg==200	T1== 204	Pb== 207	Bi == 208	- 1	-	
12	-	-	-	Th=231	-	U==240	-	

Enrichment

Searching for an Organizing Principle

In 1829, a German chemist, J. W. **Dobereiner**, published a classification system. He grouped known elements into **triads**, sets of three elements with **similar properties**.

Searching for an Organizing Principle

John Newlands (1865)

He arranged the Periodic Table according to increasing atomic mass. *He established the "Law of Octaves."*

Newlands noticed a repeating pattern of **similar properties** every **eight** elements on the Periodic table.

In 1869, the Russian chemist Dmitri Mendeleev produced the first orderly arrangement, or periodic table, of all 63 elements known at the time.

- Mendeleev arranged the elements in order of increasing atomic mass.
- Mendeleev used element symbols and aligned them based on a set of physical and chemical properties that repeat from row to row.

Group I	Group II	Group III	Group IV	Group V	Group VI	Group VII	Group VIII
H = 1							
Li = 7	Be = 9.4	B = 11	C = 12	N = 14	O = 16	F = 19	
Na = 23 K = 39	Mg = 24 Ca = 40	Al = 27.3 — = 44	Si = 28 Ti = 48	P = 31 V = 51	S = 32 Cr = 52	Cl = 35.5 Mn = 55	Fe = 56, Co = 59, Ni = 59, Cu = 63,
(Cu = 63) Rb = 85	Zn = 65 Sr = 87	— = 68 Yt = 88	— = 72 Zr = 90	As = 75 Nb = 94	Se = 78 Mo = 96	Br = 80 = 100	Ru = 104, Rh = 104, Rh = 108, Rd = 106, Ag = 108
(Ag = 108)	Cd = 112	In = 113	Sn = 118	Sb = 122	Te = 125	I = 127	1 u - 100, //g - 100.
Cs = 133	Ba = 137	Di = 138	Ce = 140	4	-	-	
		 Er = 178	 La = 180	— Ta = 182	 W = 184	4	Os = 195, Ir = 197, Pt = 198, Au = 199,
(Au = 199)	Hg = 200	Tl = 204	Pb = 207	Bi = 208			
	-	-	Th = 231	-	U = 240		

Mendeleev noticed that **similar properties** of elements occurred after "**periods**" of varying lengths (**rows** on Periodic Table).

He established "Families" or "Groups" (*columns*) on the Periodic Table, possessing **similar chemical properties**.

Group I	Group II	Group III	Group IV	Group V	Group VI	Group VII	Group VIII
H = 1							
Li = 7	Be = 9.4	B = 11	C = 12	N = 14	O = 16	F = 19	
Na = 23 K = 39	Mg = 24 Ca = 40	Al = 27.3 — = 44	Si = 28 Ti = 48	P = 31 V = 51	S = 32 Cr = 52	Cl = 35.5 Mn = 55	Fe = 56, Co = 59, Ni = 59, Cu = 63,
(Cu = 63) Rb = 85	Zn = 65 Sr = 87	— = 68 Yt = 88	— = 72 Zr = 90	As = 75 Nb = 94	Se = 78 Mo = 96	Br = 80 = 100	Ru = 104, Rh = 104, Pd = 106, Ag = 108
(Ag = 108) Cs = 133	Cd = 112 Ba = 137	In = 113 Di = 138	Sn = 118 Ce = 140	Sb = 122	Te = 125	I = 127	
(—) 		 Er = 178	 La = 180	— Ta = 182			Os = 195, Ir = 197, Pt = 198, Au = 199,
(Au = 199)	Hg = 200	Tl = 204	Pb = 207 Th = 231	Bi = 208	U = 240		

Notice the blanks on the

Periodic Table.

Mendeleev **predicted** properties and masses of **unknown elements** that he knew existed. (e.g. scandium, gallium, germanium).

Group I	Group II	Group III	Group IV	Group V	Group VI	Group VII	Group VIII
H = 1 Li = 7	Be = 9.4	B =	C = 12	N = 14	O = 16	F = 19	
Na = 23 K = 39	Mg = 24 Ca = 40	AI = 3 $-= 44$	Si = 28 TI = 48	P = 31 V = 51	S = 32 Cr = 52	Cl = 35.5 Mn = 55	Fe = 56, Co = 59, Ni = 59, Cu = 63,
(Cu = 63) Rb = 85	Zn = 65 Sr = 87	— = 68 Yt = 88	- = 72 $Zr = 90$	As = 75 Nb = 94	Se = 78 Mo = 96	Br = 80 = 100	Ru = 104, Rh = 104, Pd = 106, Ag = 108
(Ag = 108) Cs = 133	Cd = 112 Ba = 137	In = 113 Di = 138	Sn = 118 Ce = 140	Sb = 122	Te = 125	I = 127	— — — — —
		 Er = 178	 La = 180	 Ta = 182	 W = 184	-	Os = 195, Ir = 197, Pt = 198, Au = 199,
(Au = 199)	Hg = 200	Tl = 204	Pb = 207 Th = 231	Bi = 208	U = 240		

8

Oxygen 15.000

16

9

Fluorine

8 998

17

Mendeleev could NOT account for **lodine** whose atomic mass was less than Tellurium, but whose chemical properties belonged with Br and Cl's group.

The Modern Periodic Table

- Henry Moseley (1887-1915) discovered that major properties of an element are determined by <u>atomic number</u>, not atomic weight.
- After the discovery of protons, the periodic table was arranged in order of increasing atomic number.
- Mendeleev did not account for variations resulting from isotopes.

The Modern Periodic Table

- The **periodic table** of elements is an organized display of the chemical elements.
 - In order of increasing atomic number (protons)
 - Based on similar chemical properties
 - Based on similar electron configurations

Per Click a	iod n eleme	ic 1 ent's bo	Tab ex for m	le o ore info	of El	lem	ent	S		Elen	nent Cla	iss S	State of	Matter	Orbi	tals (SP	'DF)
1 H Hydrogen 1.01		At	omic Nu 1	mber		Non-Met	al		Alkali Meta	al							2 He Hellum 4.00
3 Li Lithium 8.94	4 Be Beryfllum 9.01	F	H Iydrog	gen	5 	Semi-Me Halogen	tal		Alkaline Ea Transition	arth Met Metal	al	5 B Boron 10.81	6 C Carbon 12.01	7 N Nitrogen 14.01	8 O Oxygen 16.00	9 F Fluorine 19.00	10 Ne Neon 20.18
11 Na Sodium 22.99	12 Mg Magnesium 24.31	(Ave	e) Atomi 1.01	c Mass	N L	Noble Ga Lanthani	as de		Post-Trans Actanide	sition Me	etal	13 Al Aluminum 26.98	14 Si Silicon 28.09	15 P Phosphorus 30.97	16 S Sultur 32.07	17 Cl Chlorine 35.45	18 Ar Argon 39.95
19 K Potassium 39.10	20 Ca ^{Calolum} 40.08	21 Sc Scandlum 44.98	22 Ti Titanlum 47.87	23 V Vanadium 50.94	24 Cr Chromium 52.00	25 Mn Manganese 54.94	26 Fe Iron 55.85	27 Co Cobal 58.93	28 Ni It Nickel 3 58.69	29 Cu Copper 63.55	30 Zn ^{Zinc} 65.39	31 Ga Gallum 69.72	32 Ge Germanium 72.81	33 As Arsenic 74.92	34 Se Selenium 78.96	35 Br Bromine 79.90	36 Kr Krypton 83.80
37 Rb Rubidium 85.47	38 Sr Strontlum 87.62	39 Y Yttrium 88.91	40 Zr ^{Zirconium} 91.22	41 Nb Noblum 92.91	42 Mo Molybdenun 95.94	43 TC Technetlum 98.00	44 Ru Ruthenium 101.07	45 Rh Rhodlu 102.9	46 Pd m Pailadum 11 108.42	47 Ag silver 107.87	48 Cd Cadmlum 112.41	49 In Indium 114.82	50 Sn ^{Tin} 118.71	51 Sb Antimony 121.78	52 Te Tellurlum 127.60	53 lodine 126.90	54 Xe Xenon 131.29
55 Cs Ceslum 132.91	56 Ba Barlum 137.33	57 - 71	72 Hf Hathlum 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenlum 186.21	76 Os Osmium 190.23	77 Ir Iridiun 192.2	78 Pt Platinum 12 195.08	79 Au Gold 196.97	80 Hg Mercury 200.59	81 TI Thailium 204.38	82 Pb Lead 207.20	83 Bi Bismuth 208.98	84 Po Polonium 208.98	85 At Astatine 209.99	86 Rn Radon 222.02
87 Fr Franclum 223.00	88 Ra Radium 226.00	89 - 103	104 Rf Rutherfordiu 261.00	105 Db Dubnlum 262.00	106 Sg Seaborglum 266.00	107 Bh Bohrlum 264.00	108 Hs Hassium 277.00	109 Mt Meitneri 268.0) 110 Ds lum Darmstadtlu 10 281.00	111 Rg Roentgenlur 272.00	112 Cn Copernicium 285.00	113 Uut Ununtrium 284.00	114 Fl Flerovlum 289.00	115 Uup Ununpentlur 288.00	116 LV Livermorium 291.00	117 Uus Ununseptiun Unknown	118 Uuo Ununoctium 294.00
			57 La Lanthanum 138.91	58 Ce Cerlum 140.12	59 Pr Praseodymi 140.91	60 Nd Neodymlum 144.24	61 Pm Promethlum 145.00	62 Sm Samart 150.3	63 Eu um Europium 151.97	64 Gd Gadolinium 157.25	65 Tb Terblum 158.93	66 Dy Dysprosium 182.50	67 Ho Holmlum 184.93	68 Er Erblum 187.28	69 Tm Thulium 168.93	70 Yb Ytterblum 173.04	71 Lu Lutetlum 174.97
		-,	89 Ac Actinium 227.00	90 Th Thorium 232.04	91 Pa Protactinium 231.04	92 U Uranium 238.03	93 Np Neptunium 237.00	94 Pu Plutoniu 244.0	95 Am um Americium 10 243.00	96 Cm Curlum 247.00	97 Bk Berkellum 247.00	98 Cf Californium 251.00	99 Es Einsteinium 252.00	100 Fm Fermlum 257.00	101 Md Mendelevlur 258.00	102 No Nobellum 259.00	103 Lr Lawrenclum 282.00

- 1. In Mendeleev's periodic table, elements with similar properties were grouped
 - a. in the same row.
 - b. in the same column.
 - c. in diagonal lines that run from top left to the bottom right.
 - d. in pairs of two.
- 2. For which element did Mendeleev correctly predict the properties even before it had been discovered?
 - a. gallium
 - b. hydrogen
 - c. bromine
 - d. Aluminum
- 3. In the modern periodic table, elements are arranged in order of increasing atomic _____.

- 1. In Mendeleev's periodic table, elements with similar properties were grouped
 - a. in the same row.
 - b. in the same column.
 - c. in diagonal lines that run from top left to the bottom right.
 - d. in pairs of two.
- 2. For which element did Mendeleev correctly predict the properties even before it had been discovered?
 - a. gallium
 - b. hydrogen
 - c. bromine
 - d. Aluminum
- 3. In the modern periodic table, elements are arranged in order of increasing atomic **number (protons)**.

Bohr used the **ROWS** or **PERIODS** on the periodic table to represent the **energy levels** in an atom.

Hydrogen, H, (period 1) has an electron in energy level 1.Boron, B, (period 2), has 3 electrons in its second energy level.Phosphorus, P, (period 3), has 5 electrons in its third energy level.

20

Periods

Period: a horizontal **row** on the periodic table.

- Atomic number increases from left to right across the period.
- Chemical properties change systematically across the periodic table creating
 "periodic law".

1 H Hyarogen 1.01																	2 He Helum 4.00
3 Li Lithum 0.94	4 Be Beryslum 9.01											5 B Boron 10.81	6 C Cilebon 12.01	7 N Nitrogen 14.01	8 0 0xygen 16.00	9 F Puortne 19.00	10 Ne Neon 20.18
11 Na Sodium 22.99	12 Mg Magnestum 24.31											13 Al Auminum 26.98	14 Si Silcon 28.09	15 P Phosphorus 30.97	16 S Sutur 32.07	17 CI Chlotine 35.45	18 Ar Argon 39.95
19 K Potassium 39.10	20 Ca Calcum 40.08	21 Sc Scandum 44.90	22 Ti Titarium 47.87	23 V Vanadium 50.94	24 Cr Chromum 52.00	25 Mn Manganese 54.94	26 Fe iron 55.85	27 Co Coball 58.93	28 Ni Noxee 58.69	29 Cu Copper 63.55	30 Zn 2inc 05.39	31 Ga Gallum 69.72	32 Ge Germanium 72.61	33 As Arsenic 74.92	34 Se selenum 78.90	35 Br bromine 79.90	36 Kr Krypton 83.80
37 Rb Rubidium 85.47	38 Sr stortum 87.62	39 Y Yttnum 88.91	40 Zr Zircontum 91.22	41 Nb Noblum 92.91	42 Mo Molybdenun 95.94	43 TC Technetium 98.00	44 Ru Ruthenium 101.07	45 Rh Rhodum 102.91	46 Pd Patadum 100.42	47 Ag sever 107.87	48 Cd Catmum 112.41	49 In Indium 114.82	50 Sn ^{Tin} 118.71	51 Sb Antimony 121.76	52 Te Telurium 127.60	53 1 tosne 126.90	54 Xe Xaron 131,29
55 Cs cestum 132.91	56 Ba Banum 137.33	57 - 71	72 Hf Hathum 178.49	73 Ta Tantaium 180.95	74 W Tungsten 183.84	75 Re Rhenium 180.21	76 Os oursum 190.23	77 Ir Indum 192.22	78 Pt Patrum 195.08	79 Au Geld 196.97	80 Hg Mercury 200.59	81 TI Thuilium 204.38	82 Pb Lead 207.20	83 Bi bemum 208.98	84 Po Polonium 208.98	85 At Astatine 209.99	86 Rn Madon 222.02
87 Fr Prancium 223.00	88 Ra Radum 226.00	89 - 103	104 Rf Rutherfordu 261.00	105 Db Dubnum 262.00	106 Sg Seaborgtum 266.00	107 Bh Sonrium 264.00	108 Hs Hassium 277.00	109 Mt Metmenum 268.00	110 Ds Carmetactiu 281.00	111 Rg Roentgeniur 272.00	112 Cn Copernicium 285.00	113 Uut Ururesum 284.00	114 Fl Pterovtum 280.00	115 Uup ununpertur 288.00	116 LV Uvermonum 201.00	117 Uus Ununseptur Unknown	118 Uuo Urunootum 294.00
			57 La Lanthanum	58 Ce Cerum 140.12	59 Pr Prateodymu 140.01	60 Nd Neodymum 144.24	61 Pm Promethum	62 Sm tarrartum 150.35	63 Eu Europium 151.07	64 Gd Gadolinum 167.25	65 Tb Tetium 158.03	66 Dy Dysprosium 182.50	67 Ho Holmum 164 03	68 Er Erolum 167.20	69 Tm Thulum 168.03	70 Yb Ytterburn 173.04	71 Lu Lutetium 174.07
			89 Actinum 227.00	90 Th Thorum 232.04	91 Pa Protaconium 231.04	92 U Uranum 238.03	93 Np Neptunum 237.00	94 Pu Putonum 244.00	95 Am Americum 243.00	96 Cm ^{Curum} 247.00	97 Bk Denalium 247.00	98 Cf Californum 251.00	99 Es Ensterium 252.00	100 Fm Permum 267.00	101 Md Mendaestur 258.00	102 No Nobelium 259.00	103 Lr Lawrencium 262.00

Groups or Families

Periodic Table with Atomic Numbers & Atomic Masses

1 H t,01		T at	'he to tomi	op n c nu	umb ımbe	er in er (p	n eac roto	ch ce ns).	ell is	the							2 He Helum
3 Li Uthum 0.94	4 Be Beryslum 9.01	•	Th	e bo	otton	n nu	mbe	r in	each	l cell	l is	5 B Boron 10.81	6 C Carbon 12.01	7 N Nitrogen 14.01	8 Oxygen 16.00	9 F Pluathe 19.00	10 Ne Neon 20.18
11 Na Sodium 22.99	12 Mg Magnesium 24.31		the average atomic weight. 13 14 15 16 17 1 All Si P S CI A Autrinum Silicon 28.09 20.09 30.97 32.07 35.45 36 35 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 35														
19 K Potassilum 39.10	20 Ca Calcum 40.08	21 Sc Scandum 44.98	22 Ti Titarium 47.87	23 V Vanadium 50.94	24 Cr Chromum 52.00	25 Mn Manganese 54.94	26 Fe iron 55.85	27 Co Cobait 58.93	28 NI Nickel 58.69	29 Cu Copper 63.55	30 Zn 20c 05.39	31 Ga Gallum 69.72	32 Ge Germanium 72.01	33 As Arsenic 74.92	34 Se selenium 78.98	35 Br Bronsne 79.90	36 Kr Kr 83.80
37 Rb Rubialum 85.47	38 Sr strontum 87.62	39 Y YBrum 88.91	uo 47.87 50.94 52.00 54.94 55.85 58.93 58.69 63.55 65.39 69.72 72.01 74.92 78.96 79.90 83.8 19 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 54 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 101 91.22 92.91 95.94 98.00 101.07 102.91 106.42 107.87 112.41 118.71 121.70 127.60 126.90 131.														
55 Cs Cestum 132.91	56 Ba Banum 137.33	57 - 71	72 Hf Hathum 178.49	73 Ta Tantaium 180.95	74 W Tungsten 183.84	75 Re Rhenium 180.21	76 Os Osmum 190.23	77 Ir Indum 192.22	78 Pt Patinum 195.08	79 Au Goto 196.97	80 Hg Mercury 200.59	81 TI Thailium 204.38	82 Pb Lead 207.20	83 Bi bismuth 208.98	84 Po Polonium 205.98	85 At Astatine 209.99	86 Rn Madon 222.02
87 Fr Pranclum 223.00	88 Ra Radum 226.00	89 - 103	104 Rf Rutherfordlu 261.00	105 Db Dubnium 262.00	106 Sg Seaborgium 266.00	107 Bh Sonnum 264.00	108 Hs Hassium 277.00	109 Mt Methenum 268.00	110 Ds Darmetadtiu 281.00	111 Rg Roentgeniur 272.00	112 Cn Copernicium 285.00	113 Uut Unurstum 284.00	114 FI Pterovtum 289.00	115 Uup 288.00	116 LV Uvermotur 291.00	117 Uus Ununseptiur Unknown	118 Uuo Ununoctium 294.00
			57 La Lanthanum 138.91	58 Ce Certum 140.12	59 Pr Praseodyme 140.91	60 Nd Neodymium 144.24	61 Pm 145.00	62 Sm Samartum 150.38	63 Eu Europium 151.97	64 Gd Gadolinium 157.25	65 Tb Tetlum 158.93	66 Dy Dysprosium 182.50	67 Ho Holmsum 104.93	68 Er Erbium 107.20	69 Tm Thullum 168.93	70 Yb Ymeroium 173.04	71 Lu Lutetium 174.97
			89 Ac Actirium 227.00	90 Th Thorium 232.04	91 Pa Protactinium 231.04	92 U Uranum 238.03	93 Np Neptunium 237.00	94 Pu Plutonium 244.00	95 Am Americium 243.00	96 Cm Cunum 247.00	97 Bk Denxellum 247.00	98 Cf Californum 251.00	99 Es Ensteinium 252.00	100 Fm 267.00	101 Md Mendeleviur 258.00	102 No Nobellum 259.00	103 Lr Lawrencium 262.00

Atomic Mass

Atomic mass is a value that depends on the distribution of an element's **isotopes** in nature and the masses of those isotopes.

- Atomic mass is given in atomic mass units (amu) which are defined as one twelfth the mass of a carbon-12 atom.
- The value of the atomic mass (e.g. chlorine) is a weighted average.

Distri Iso	bution of Ch topes in Nat	lorine ure										
Isotope Percentage Atomic Mass												
Chlorine-35	75.78%	34.969										
Chlorine-37	24.22%	36.966										

The periodic table classifies elements in three ways:

1) solid, liquid, gas;

2) metals, non-metals, metalloids;

3) naturally occurring and man made.

1A	21																AS
H ₂	2A	2										3A	44	5A	6A	7A	2 He
a Li scc	Be			1	Solid	Liquid	Ga	5				5 B RHOM	e C ex	7 N 645	8 0 5A5	9 F	10 Ne
11 Na	12 Mg	38	48	5B	6B	78		- 88 -		18	28	13 Al Fcc	14 Si FCC	15 P cueic	16 S ORTHO	17 CI 645	18 Ar
19 K	20 Ca	21 Sc	22 TI	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	38 Kr
37 Rb	38 Sr 700	39 Y	40 Zr	41 ND BCC	42 Mo	43 Tc	44 Ru	45 Rh	48 Pd	47 Ag	48 Cd	49 In TETRA	50 Sn	51 Sb	S2 Te	53 061140	54 Xe
55 Cs	56 Ba	57-71	72 Hf	73 Ta 800	74 W	75 Re	76 Os HEX	77 Ir FCC	78 Pt	79 Au	80 Hg	81 TI HEX	82 Pb Fcc	83 Bi	84 Po	55 At	85 Rn
87 Fr	88 Ra	89-103 Abridas	E	lements	> 104 e	xist only	for very	short h	alf-lifes	and the	data is u	unknown					

Lanthanides	57 La	58 Ce FCC	59 Pr	N N S	en Pm	62 Sm	63 Eu	ĕ d	es th	® Dy ₽	er Ho	65 Er	en Tm	20 A 20	71 Lu
Actinides	an Ac rcc	90 Th FCC	91 Pa TETRA	92 U oletwo	93 Np owneo	Pu solo	95 Am	96 Cm	97 Bk	BS Cf HEX	99 Es	100 Fm	101 Md	102 No	103 Lr

Metals, Semimetals, and Nonmetals

1 H Hydrogen			Me	tals													
3 Li Uttium 6.94	4 Be Beytlum 9.01		•	Mal elec	leab	le, d	luctil hea	e, c t we	ondu II m	uct	V						
11 Na Sodum 22.99	12 Mg Magnesium 24.31			solic	ds.		nca		,		y 	13 Al Authum 26.98					
19 K Potassium 39.10	20 Ca Caldum 40.08	21 Sc Scandum 44.96	22 Ti Ttanum 47.87	23 V Vanasum 50.94	24 Cr Chromium 52.00	25 Mn Manganese 54.94	26 Fe Iron 55.85	27 Co Cobat 58.93	28 Ni Notel 55.09	29 Cu Copper 63.55	30 Zn 2he 65.39	31 Ga Gallum 69.72					
37 Rb Rucidium 85.47	38 Sr stortum 87.62	39 Y Yasum 88.91	40 Zr 21conum 91.22	41 Nb Noblum 92.91	42 Mo Molyodenun 95.94	43 Tc Technetium 98.00	44 Ru Ruthenum 101.07	45 Rh Rhodlum 102.91	46 Pd Paladum 106.42	47 Ag siver 107.87	48 Cd Caomum 112.41	49 In Indum 114.82	50 Sn 118.71				
55 Cs Ceslum 132.91	56 Ba Banum 137.33	57 - 71	72 Hf Hathlum 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenum 188.21	76 Os Osmum 190.23	77 Ir Indum 192.22	78 Pt Platnum 195.08	79 Au goid 196.97	80 Hg Mercury 200.59	81 TI Thatum 204.38	82 Pb Leso 207.20	83 Bi Bismuth 208.98			
87 Fr Francium 223.00	88 Ra Fadum 226.00	89 - 103	104 Rf Rutherfordu 201.00	105 Db Outrium 262.00	106 Sg Seaborgium 200.00	107 Bh 50mum 264.00	108 HS Hassium 277.00	109 Mt Vetnerium 268.00	110 Ds Cernetactiu 281.00	111 Rg Foengenius 272.00	112 Cn Copendum 285.00	113 Unuteum 284.00	114 FI Fletostum 289.00	115 Uup 0007pentur 288.00	116 LV Uvernonum 291.00		
			57 La Lantanum 138.91	58 Ce cetum 140.12	59 Pr Pratecotyme 140.91	60 Nd Neodymlum 144.24	61 Pm Promethum 145.00	62 Sm Samartum 150.36	63 Eu Europlum 151.97	64 Gd Gacolinium 157.25	65 Tb Tethum 158.93	66 Dy Dysprosium 162.50	67 Ho Holmum 164.93	68 Er 167.26	69 Tm Thulum 168.93	70 Yb Yterblum 173.04	71 Lu Lutetum 174.97
			89 Ac Admum 227.00	90 Th Thorum 232.04	91 Pa Protactinum 231.04	92 U Utanum 238.03	93 Np Neptunium 237.00	94 Pu Putonum 244.00	95 Am Americium 243.00	96 Cm outum 247.00	97 Bk Berkelum 247.00	98 Cf calitorium 251.00	99 Es Ensteinum 252.00	100 Fm Permum 257.00	101 Md Verdeletur 258.00	102 No Nobelum 259.00	103 Lr 282.00

Metals, Nonmetals, and Metalloids

Metals

As one goes across a period, the properties of elements become less metallic and more nonmetallic. About 80% of the elements are metals.

Metals, Nonmetals, & Metalloids

Metals

- Good conductors of heat and electric current.
- High luster, or sheen ... ability to reflect light.
- Solids at room temperature, except for mercury (Hg).
- **Ductile**, can be drawn into wires.
- Malleable, can be hammered into thin sheets without breaking.
- Hard & Strong

Transition Metals

Transition metals are elements that form a bridge between the elements on the left and right sides of the table. Known as **"B" groups**.

• Transition elements, such as copper and silver, were among the first elements discovered.

One property of many transition metals is their ability to form compounds with distinctive colors.

Metals, Semimetals, and Nonmetals

Nonmetals

 Brittle, poor conductors, can be solid, liquid, or gas.

				He Hetum 4.00
on 11	7 N Ntrogen 14.01	8 Oxygen 16.00	9 F Fluorine 19.00	10 Ne Neon 20.18
	15 P Phosphorus 30.97	16 S Sutur 32.07	17 CI Chlorine 35.45	18 Ar Argon 39.95
		34 Se Selentum 78.90	35 Br Bromine 79.90	36 Kr Krypton 83.80
			53 lodine 126.90	54 Xe Xenon 131.29
			85 At Astathe 209.99	86 Rn Racon 222.02
		,	117 Uus Ununseptur	118 Uuo
			Unknown	294.00

Carb 12.0

Metals, Nonmetals, and Metalloids

Nonmetals

- Tend to have properties opposite of metals.
- Usually poor conductors & brittle. 18 IA VIIIB IA 8A 13 14 15 16 2 17 2 VB IIA IIIB IVB VIB VIIB 1 н He Metalloids 2A Metals Nonmetals 3A 5A 7A 4A 6A 4 5 10 3 6 8 2 Li C Be B N 0 F Ne 10 8 9 11 12 5 7 3 6 4 13 11 12 IIIA VA 14 15 16 18 IVA VIA VIIA VIIA IIB 17 IB 3 A Si P C Na Mg S Ar 3B **4**B 5B 7B 18 2B 68 8B 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 19 20 4 K Ti V Ca Sc Cr Mn Fe Co Ni Cu Zn Ga Ge Se Kr As Br 43 44 51 37 38 39 40 41 42 45 47 48 49 50 52 53 54 46 5 Zr Rb Sr Y Nb Rh Pd Sb Mo Tc Ru Ag Cd In Sn Te Xe L 75 79 80 83 84 85 86 55 56 71 72 73 74 76 77 78 81 82 6 Cs Hf TI Pb Ta W Pt Bi Ba Lu Re Os Ir Au Hg Po At Rn 106 111 112 87 88 103 104 105 107 108 109 110 113 114 115 116 118 117 7 Fr Rf Db Bh Ra Lr Sg Hs Mt Ds Rg Cn Uut Uuq Uup Uuh Uuo 57 58 59 60 61 62 65 67 68 69 70 63 64 66 Tb Ce Pr Nd Eυ Gd Dy Ho Er Yb La Pm Sm Tm 89 92 93 97 98 100 102 90 91 94 96 99 101 Th Bk Cf Ac Pa U Es Np Pu Cm Fm Md No Am

Metals, Semimetals, and Nonmetals

Semimetals (metalloids)

Properties of both metals and nonmetals.

Metals, Nonmetals, and Metalloids

Metalloids

- "Staircase Elements" that sometimes behave like metals.
- Under other conditions, they may behave like nonmetals.
- Silicon is also present as the compound silicon dioxide in glass items and the earth's crust (*silica*).

Information for Each Element

Each element's entry on the periodic table shows:

- Chemical symbol
- Element name
- Atomic number
- Average atomic mass
- Electron configuration

Atomic Number 11 **Na** Sodium Average Atomic Mass 22.99

Review of the Periodic Table Copy the Blank table and LABEL

QUICK CHEC

- Label metals, metalloids, and non-metals.
- Label periods and groups.

Review of the Periodic Table

- 1. What determines the atomic mass of an element?
 - a. the natural distribution of isotopes and the atomic numbers of those isotopes
 - b. the natural distribution of isotopes and the masses of those isotopes

- c. the mass of the isotope of the element that has the most neutrons
- d. the average number of protons in the element's nucleus
- 2. Which of the following is not characteristic of metals?
 - a. Ductile c. good electrical conductor
 - b. typically solid at room temperature d. brittle
- 3. Within a period of the periodic table, how do the properties of the elements vary?
 - a. Metallic characteristics increase from left to right.
 - b. Metallic characteristics decrease from left to right.
 - c. Reactivity increases from left to right.
 - d. Reactivity decreases from left to right.

- 1. What determines the atomic mass of an element?
 - a. the natural distribution of isotopes and the atomic numbers of those isotopes
 - b. the natural distribution of isotopes and the masses of those isotopes
 - c. the mass of the isotope of the element that has the most neutrons
 - d. the average number of protons in the element's nucleus
- 2. Which of the following is not characteristic of metals?
 - a. Ductile c. good electrical conductor
 - b. typically solid at room temperature d. brittle
- 3. Within a period of the periodic table, how do the properties of the elements vary?
 - a. Metallic characteristics increase from left to right.
 - b. Metallic characteristics decrease from left to right.
 - c. Reactivity increases from left to right.
 - d. Reactivity decreases from left to right.

			ŀ	2	e	; 		(2	С		(.0	21	N	
1	IA 1 H	IA		Pe	eri	00	lic	T	a	blo	е							0 2 He	
2	3 Li	4 Be		of	[t]	he	Ε	le	m	en	ts		5 B	°C	7 N	8 0	9 F		
	11 Na								— VII –						15 P	16 S	17 CI		
4																34 Se	35 Br		
5	37 Rb																53 		
6	55 Cs																85 At		

When elements are arranged in order of increasing atomic number, there is a periodic pattern in their physical and chemical properties.

Elements in a group have similar properties because they have the same number of valence electrons.

A **valence electron** is an electron that is in the highest occupied energy level of an atom.

Valence / "A" Groups

"A" groups on the periodic table are numbered from 1 through 8. The group number matches the number of valence electrons in the electron configuration of an element in that group.

1	1 LA H Hydrogen L078 3 Li Lithiore	2 2A 4 Be Beryllion		11	Atomic num Element sys Element na Atomic weig	iber mbol me ght		Alkalai me Alkaline ea Lanthanide Actinides Transition Unknown p	tals eth metals rs metals woperties		Post-transiti Metalloids Other norm Halogens Noble gases	ion metals etals	13 3A 5 B Beron	14 4A Carbon	15 5A 7 Nitregen	16 6A Drugen	17 7A F Plaasiter	18 8A 2 Hee Hetium 4.0226 10 Nee Neon
3	11 Na Sedium 22.990	12 Mg Magnesium 24305	3 38	4	5 58	6 68	7 78		9 88	10	11 18	12 28	15 Al Aluminum 26.982	14 Si Silican 28.084	15 P Phesphorus 30.974	16 S Soffer 12.459	17 Cl Chlorine 33.446	18 Ar Argan 38,948
Prind	19 K Potassium 39,098	20 Ca Calcium 40.078	21 Sc Scandium 44.956	72 Ti Titanium 47,867	23 V Varadium 50.942	24 Cr Chromken 51.996	25 Mn Manganese 54,938	26 Fe Iron 55.845	27 Co Cobalt 58.933	28 Ni Nickel S8.693	29 Cu Copper 65.546	50 Zn Znc 65.30	51 Ga Gattium 69.723	32 Ge Germanium 72.63	53 As Arsenic 74.922	Setemium 78.96	35 Br Bromine 79.904	36 Kr Krypton 83.7%
5	37 Rb Rubidium 85.468	58 Sr Strontium 8742	39 Y Yttrium 82.906	40 Zr Zirconium 91,224	41 Nb Noblam \$2.906	42 Mo Matjutateram 95.96	43 Tc Technetium 98.9062	44 Ru Ruthenium 101.07	45 Rh Rhodkam 102.91	46 Pd Pallacium 106.42	47 Ag Salver 107.87	48 Cd Cadmium 11241	49 In Indium 114.82	50 Sn Tin 118.71	51 Sb Antimumy 121.76	52 Te Tellurium 127.60	53 ladine 126.90	54 Xe Xenon 131.29
6	55 Cs Cesium 112.91	56 Ba Barium 137.35		72 Hf Hafnium 178.49	75 Ta Tantalum 180.95	74 W Tangsten 191.94	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 Irr Iridium 192.22	78 Pt Platinum 195.01	79 Au Gold 196.97	80 Hg Mercury 202.59	81 Tl Thalliam 294.38	B2 Pb Lead 207.2	Bi Bismuth 208.98	84 Po Polanium (209)	85 At Astatise (210)	86 Rn Radon (222)
7	87 Fr Francium (223)	88 Ra Radium (226)		104 Rf (261)	105 Db Dubnium (262)	106 Sg Seaborgian (266)	107 Bh Boltrium (264)	108 Hs Hassium (269)	109 Mt Meitnerium (268)	110 Ds Damstaettian (258)	111 Rg Roentgenium (258)	112 Cn Capensicium (268)	113 Uut Unuertrium (268)	114 Fl Rerovium (268)	115 Uup Unargentian (268)	116 Lv Uvermarker (268)	117 Uus Drumseptium (268)	118 Uuo Ununoctium (268)
			tides Lanthanides	57 La Lanthanum 138.51 89 Ac	58 Ce Gertian 140,12 50 Th	59 Pr 148.91 91 Pa	50 Nd 144.24 92 U	61 Pm (145) 93 Np	62 Sm Samarium 130.36 94 Pu	63 Eu Escopiare 151,94 95 Am	64 Gdd Gadottnium 15725 96 Cm	65 Tb Sertiam 133.53 97 Bk	66 Dy Dyspresiden 162,50 98 Cf	67 Ho Hotmium 164.95 99 ES	48 Er Erbium 58726 100 Fm	59 Tm Thailam 148.95 101 Md	70 Yb Yttartsium 173,04 102 NO	71 Lu Lutethen 174.97 105 Lr

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	L∎ hium			Р	eri	0	lia	27	าล	bla	e							2	
11um 12 178 178 178 18 179 18 179 18 179 18 18 18 18 18 113 14 15 16 17 18 18 18 19 18 18 18 18 18 13 14 15 16 17 18 17 18 17 18 18 18 18 18 18 13 14 15 16 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 17 18 17 18 19 50 51 52 53 54 17 18 18 18 18 84 85 86 86 81 18 84 85 86 86 86	11 a	IIA 4 Be		0	f ti	he	Ε	le	m	en	its		IIIA 5 B	6 C	VA 7 N	8 0	9 F	10 Ne	
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 x	dium	12 Mg	IIIB						— VII -				13 Al		15 P	16 S	17 CI	18 Ar	
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 37 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 37 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Ba *La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Ba 89 104 105 106 107 108 109 110 111 112 113 55 Si 60 61 62 63 64 65 66 67 68 69 70 71 55 Sium 90 91 92 93 94 95 96 97 9	19 K	20 Ca														34 Se	35 Br	36 Kr	1
37 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Vale 36 *La Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po At Rn 37 88 89 104 105 106 107 108 109 110 111 112 113 Po At Rn Po<	ssium	38 Sr															53 	54 Xe	
Image: Normal Signature 104 105 106 107 108 109 110 111 112 113 Indiam Ra +Ac Rf Ha Sg Ns Hs Mt 110 111 112 113 55 Image: Normal Signature Sg 60 61 62 63 64 65 66 67 68 69 70 71 55 Image: Normal Signature Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Fm Ha U Np Pu Am Cm Bk Cf Es Fm Md No Lr	37	56 Ba															85 At	86 Rn	valer
55 Sium inide 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 102 103 Th Pa V Np Pu Am Pu Am Am Am Am Am Am Am A	(D idium	88 Ra																	elect
LS inide 58 59 60 61 62 63 64 65 66 67 68 69 70 71 sium e 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	55																		010001
e 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr	_S	Inide		59 Pr	⁶⁰ Nd			63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	Er	⁶⁹ Tm	70 Yb	71 Lu			
	sium	e	90 Th	91 Pa	92 U		94 Pu					99 Es	100 Fm	101 Md	102 No	103 Lr			

Group 1A

Alkalı Metals

Alkali Metals (Group IA)

- Group 1 or IA
- Easily lose an electron in order to gain ideal electron configuration.
- Typical properties:
 - Silver in color
 - Soft (can be cut with a knife)
 - Highly reactive with oxygen and water
 - Able to oxidize in air

Alkaline Earth Metals

Alkaline Earth Metals (Group IIA)

- Group 2 or IIA
- Lose two electrons to gain *ideal electron configuration.*
- Typical properties:
 - Silver in color
 - More brittle than alkali metals
 - Somewhat reactive
 - Low in density, with low melting and boiling points

Transition Metals (B Groups)

- Characterized by the presence of valence electrons in special orbitals.
 - e.g. Copper, silver, gold, iron
- Form colored compounds
- May have unusual properties:
 - Magnetism
 - High conductivity
- "Inner" transition metals are rare; often radioactive

1	1 H			P	eri	0	dic	21	`a	bl	е					Group 7A	2 He
2	3 Li			0	f t]	he	Ε	le	m	en	its			° C	7 N	⁹ F	
	11 Na		IIIB										13 Al		15 P	Fluorine	
4	19 K															Chlorine	
5	37 Rb															Bromine	
6	55 CS															53 I	
7	87 Fr															85	
																At Astatine	
*L S	antha eries	nide		59 Pr	60 Nd			63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
+ A S			90 Th	91 Pa	92 U		94 Pu					99 Es	100 Fm	101 Md	102 No	103 Lr	

valence

electrons

Halogens

Halogens (Group VIIA)

- Group 17 or VIIA
- Easily gain an electron to gain ideal electron configuration
- Typical properties
 - Highly reactive with metals
 - Toxic to organisms
 - Most occur as diatomic molecules (F₂, Cl₂, Br₂, l₂)
 - React with metals to form salts

																Group OA
IA 1		P	eri		dia	ъ П	ิ ว	hl	ρ							Performance Perfor
		Τ.		101	un	Z	. u	UT.								10
8		0	f ti	he	E	le	m	en	its		5 B	6 C	7 N	8 0	9 F	Ne
valence	3						— VII -				13 A I		15 P	16 S	17 CI	19
vulence																
	C													Se	Br	Ar
electrons															53 	Argon
															85	36
"FI // / "															At	Kr
I OLL																Krypton
	г															54
de la arbier reida	50	50	60	6.1	6.2	6.2	6.4	65	66	67	69	60	70	71		X۵
* Lanthanide	Ce.		Nd			EII	Gd.		Dv.	Ho	Fr					AC
Series		04	1154			0.0	- Card	112	7	110	100	101	100	100		Xenon
+ Actinide Series	Th	Pa	92 U		Pu					Es	Fm	Md	No	Lr		86
																Rn Radon

Noble Gases

Group 84

Noble Gases (Group VIIIA)

Group 18 or VIIIA

Inert gases (nonreactive) have ideal electron configuration

- Typical properties
 - Odorless and tasteless
 - Nonreactive and nonflammable
 - Have extremely low boiling points (i.e. gases)
 - Produce characteristic colors
 when excited electrically

Review of the Periodic Table

QUICK CHECK

- A Groups with valence electron configuration
- B Groups (transition elements, inner transition)
- Metals, non-metals, metalloids
- Alkali & Alkaline Earth Metals, Halogens, Noble Gases
- How many valence electrons in the "A" groups?

Review of the Periodic Table

- 1. Why do elements in a group have similar chemical properties?
 - a. They have the same number of valence electrons.
 - b. They have the same ratio of protons to neutrons.
 - c. Their atomic masses are multiples of the least massive element of the group.
 - d. They have the same number of total electrons.
- 2. In general, the metallic characteristics of A group elements within a period decreases from _____ to ____.
- 3. Which "A" group elements tend to lose electrons? Gain electrons? Why?

1. Why do elements in a group have similar chemical properties?

- a. They have the same number of valence electrons.
- b. They have the same ratio of protons to neutrons.
- c. Their atomic masses are multiples of the least massive element of the group.
- d. They have the same number of total electrons.
- 2. In general, the metallic characteristics of A group elements within a period decreases from **left** to **right**.
- 3. Which "A" group elements tend to lose electrons? Gain electrons? Why?

Groups 1A – 3A lose electrons

Groups 5A – 7A gain electrons

Atoms gain or lose electrons to complete their valence (outer electron configuration).

The Arrangement of the Periodic Table

The periodic table contains a great deal of information on the elements.

- Periods refer to horizontal rows of the periodic table.
- Groups or families refer to vertical columns of the periodic table.
- Cells of the periodic table contain information such as the atomic symbol, atomic number, atomic mass, name of the element, electron configuration, and possible oxidation numbers.
- Elements can be categorized broadly as metals, nonmetals, or semimetals (metalloids).

Classifying the Elements

Groups

- Alkali metals: most reactive metals, soft, oxidize quickly.
- Alkaline earth metals: not as reactive as alkali metals, brittle, shiny.
- Transition metals: form colored compounds, good conductors of electricity.
- Halogens: most reactive nonmetals.
- Noble gases: lowest chemical reactivity, used in lighting.
- Inner transition metals: radioactive, used in nuclear power plants.

The Periodic Table Song (2:44) http://somup.com/cF6QFinnyQ

Tom Lehrer (1970 ... 1:47) <u>The Elements Song</u> <u>http://somup.com/cFQ22hVSKJ</u>

The Periodic Table REVIEW Song (3:07)

http://somup.com/cq6f2ge7g4

ation States

s-block

18 0

4.00260