Sample Problems

- 1a. $7.1 \times 10^{-8} \rightarrow$ change to common exponent, multiply # by #; since this is addition, leave superscript
- 1b. $7.3 \times 10^{-2} \Rightarrow$ since each number has a common exponent, subtract the # from #, leave superscript
- $3.0 \times 10^4 \rightarrow$ when multiplying numbers, multiply # by # and ADD superscripts (applies to 2. denominator); when dividing numbers, divide # by # and SUBTRACT superscripts (applies to overall problem);
- % error = $2\% \rightarrow (Accepted Observed)/Accepted x 100\% \rightarrow (2.00 m 2.04 m)/2.00 m$ 3. x 100%

Answers

- **4. a.** 4 **c.** 2

 - **b.** 4
- **d.** 5
- **5. a.** 3 **c.** 4

 - **b.** 2 **d.** 4
- **6. a.** 8.71×10^{1} m
 - **b.** 4.36×10^8 m
 - **c.** 1.55×10^{-2} m
 - **d.** 9.01×10^3 m
 - **e.** 1.78×10^{-3} m
 - **f.** 6.30×10^2 m
- **7. a.** 9 × 10¹ m
 - **b.** 4 × 10⁸ m
 - **c.** 2×10^{-2} m
 - **d.** 9×10^3 m
 - **e.** 2×10^{-3} m
 - **f.** 6×10^2 m

Answers

- **8.** a. 79.2 m
- **c.** 11.53 m
- **b.** 7.33 m **d.** 17.3 m
- 9. 23.8 g
- **10.** a. $1.8 \times 10^1 \text{ m}^2$
 - **b.** 6.75×10^2 m
 - **c.** 5.87×10^{-1} min
- **11.** 1.3 × 10³ m³

Lesson Check Answers

- **12.** Write the number as a product of two numbers: a coefficient greater than or equal to one and less than ten, and 10 raised to an integer power.
- **13.** Accuracy compares the measured value to the correct value. Precision compares more than one measurement.
- **14.** The significant figures in a calculated answer depend on the number of significant figures of the measurements and the mathematical operation used in the calculation.
- **15.** error = -1.6° C; percent error = 1.3%
- a. unlimited **d.** 2
 - **b.** 5
- **e.** 3
- **c.** 3
- f. unlimited **17. a.** 6.6×10^4 **d.** 8.65×10^{-1}

 - **b.** 4.0×10^{-7} **e.** 1.9×10^{14}
 - **c.** 10⁷

18. BIGIDEA Accuracy compares a measured value to an accepted value of the measurement; precision compares a measured value to a set of measurements made under similar conditions; and error is the difference between the measured and accepted values.

Sample Problems

- 19. melting point = 1234 K \rightarrow 960.8 C + 273 K boiling point = 2485 K \rightarrow 2212 C + 273 K
- 20. $-196 C \rightarrow 77.2 K 273$
- 21. density = $2.50 \text{ g/cm}^3 \rightarrow d = m/v = 612 \text{ g} / 245 \text{ cm}^3$; The metal is NOT aluminum ($d = 2.7 \text{ g/cm}^3$)
- 22. $10.5 \text{ g/cm}^3 \rightarrow \text{d} = \text{m/v} = 612 \text{ g} / 6.48 \text{ cm}^3 \rightarrow \text{d} = \text{m/v} = 68.0 \text{ g} / 6.48 \text{ cm}^3$

Lesson Check Answers

- All metric units are based on multiples of 10, which makes them easy to use.
- 24. the degree Celsius and the kelvin
- 25. Density is an intensive property that depends only on the composition of a substance, not on the size of the sample. Density = mass/volume
- mass, kilogram (kg); length, meter (m); volume, cubic meter (m³); temperature, kelvin (K)
- 27. a. m; 10-3 of the unit
 - b. n; 10-9 of the unit
 - c. d; 10⁻¹ of the unit
 - d. c; 10⁻² of the unit

- 28. m3, L, dL, cL, mL, μL
- **29.** $8.8 \times 10^{2} \text{ cm}^{3}$
- Mass is a measure of the amount of matter in an object. Weight is a measure of the force of gravity on an object.
- 31. 443 K
- 32. 1.7×10^{-1} g/L
- 33. All the densities are equal.
- **34.** Li, Na, and K are less dense than water.
- Density generally decreases when temperature increases.

Sample Problems

- 36. $1.0080 \times 10^4 \text{ min } \rightarrow 1 \text{ week } \times 7 \text{ days/week } \times 24 \text{ hrs/day } \times 60 \text{ min/hr}$
- 37. $1.44000 \times 10^5 \text{ s} \rightarrow 40 \text{ hr} \times 60 \text{ min/hr} \times 60 \text{ s/min}$
- 38. 67 students \rightarrow 570 cm x 1 student/8.5 cm
- 39. $86.4 \text{ F} \rightarrow 48.0 \text{ C} \times 1.8 \text{ F/1 C}$
- 40. 1.53×10^{22} atoms $\rightarrow 5.00 \text{ g} \times 1 \text{ atom}/3.271 \times 10^{-22} \text{ g}$

Answers

- 41. a. 44 m
 - **b.** 4.6×10^{-3} g
 - **c.** 10.7 cg
- 42. a. 1.5 × 10⁻² L
 - **b.** $7.38 \times 10^{-3} \text{ kg}$
 - **c.** $6.7 \times 10^3 \text{ ms}$
 - **d.** $9.45 \times 10^7 \, \mu g$
- **43. a.** 6.32 cm³ **b.** 0.342 cm³
- 44. See answers for Problem 43.
- **45.** 47.5 g

Answers

- 46. 2.27 × 10⁻⁸ cm
- 47. 1.3 × 10⁸ dm
- 48. 1.93 × 10⁴ kg/m³
- 7.0 × 10¹² RBC/L

Sample Problems

- 45. d = m/v ... therefore, $m = dv \rightarrow 50.0 \text{ cm} 3 \times 0.950 \text{ g/cm} 3 = 47.5 \text{ g}$
- 46. 0.227 nm x 1 m / 10 9 nm x 10 2 cm / 1 m = 2.27 x 10 -8 cm
- 47. 1.3 x 10 4 km x 10 3 m / 1 km x 10 1 dm / 1 m = 1.3 x 10 8 dm
- 48. $19.3 \text{ g/cm3} \times 1 \text{ kg/}10 \text{ 3 g} \times [10 \text{ 2 cm/}1 \text{ m}] \text{ 3} = 19.3 \text{ g/cm3} \times 1 \text{ kg/}10 \text{ 3} \times 10 \text{ 6 cm3} \text{ /1 m3} = 19.3 \times 10 \text{ 3 kg/}1 \text{ m3} = 1.93 \times 10 \text{ 4 kg/}m3$
- 49. 7.0 x 10 6 RBC/mm3

mm3 to Liters = $[10 \ 1 \ mm = 1 \ cm] \ 3 = 10 \ 3 \ mm3 = 1 \ cm3 \ and 1 \ cm3 = 1 \ ml \ and 1 \ L = 10 \ 3$ ml = therefore, 1 L = $10 \ 3 \ [10 \ 3 \ mm3] = 7.0 \ x \ 10 \ 6 \ RBC/L = 7.0 \ x \ 10 \ 12 \ RBC/L$

Lesson Check Answers

- **50.** The numerical value (and the unit) changes; the actual size does not change.
- 51. conversion problems
- 52. a. 1 hour / 60 min
 - **b.** 10³ mg / 1 g
 - c. 103 mL / 1 dm3

- **53. a.** $1.48 \times 10^7 \, \mu g$
 - **b.** $3.72 \times 10^{-3} \text{ kg}$
 - **c.** $6.63 \times 10^4 \text{ cm}^3$
 - **d.** $7.5 \times 10^{1} \text{ kJ}$
 - **e.** 3.9×10^3 da
 - **f.** $2.1 \times 10^{1} \mu L$
- 54. 9.52 kg
- **55.** 1.08 × 10⁹ km/h