Click on "Slide Show"

Click "From Beginning" or "From Current Slide"

Human Reproduction Anatomy & Function

Review of Terms

- Sexual reproduction
 - Requires 2 parents (meiosis).
- Asexual reproduction
 - 1 parent (mitosis)
- Internal Fertilization
 - Union of egg and sperm inside female's body.
 - E.g. chickens, humans
- External Fertilization
 - Union of egg and sperm outside the female's body.
 - E.g. Fish, amphibians

Gametes

• Gonads

• Zygote

- Specialized sex cells
 sperm and eggs (haploid cells)
 - Organs that produce the gametes.
 ovaries and testes
- Fertilized egg (diploid)
- Primary Sex
 Characteristics
- Development of testes and ovaries.

- Secondary Sex Characteristics
- Noticeable characteristics that
 distinguish the 2 sexes (e.g., breasts,
 wide hips vs. muscular, facial hair).

Male anatomy: Sagittal View

Male anatomy: Sagittal View

Male Anatomy: Frontal View

TRY IT

Male Anatomy: Frontal View

TRY IT

A. Testis

Male gonad

1. Seminiferous tubules

Site of meiosis and sperm production.

2. Interstitial cells

Produce testosterone.

B. Scrotum

External sac that holds testes.

C. Epididymis

- Long tube leading from testes to vas deferens.
- Site of <u>sperm</u> maturation.

Male Anatomy

D. Vas Deferens

Tube leading to urethra.

E. Ejaculatory Duct

Front View Side View Urinary bladder Seminal vesicle Vas deferens Rectum Prostate Urethra gland Penis Bulbourethral Prostate gland gland Epididymis Bulbourethra Seminiferous gland tubules Testis

Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved.

Storage of sperm before ejaculation between vas deferens & seminal vesicles.

F. Urethra

Tube leading from body, common to both urine and semen.

G. Penis

Contains erectile tissue that fills with blood.

H. Semen Alkaline (basic) pH Fructose

- I. Three Accessory Glands
 - 1. Two Seminal Vesicles Produce majority of semen (50-60%).

2. Prostate Gland

-Large gland surrounding urethra; produces basic solution found in semen.

- -Common site of cancer in older men.
- 3. Two Bulbourethral glands -Secrete pre-ejaculatory fluid.
 -Prepare urethra for passage of semen.

Review of Spermatogenesis

spermatogonium

Review of Spermatogenesis

General Information about Sperm Production

- 1. Where are SPERM PRODUCED?
- 2. Where do SPERM MATURE?
- 3. When do males begin sperm production?
- 4. How many sperm per year do humans produce?
- 5. How many sperm are present in a single ejaculation event?
- 6. Why are the testes located outside the body?

- Seminiferous Tubules
- Epididymis
- Puberty
- About 30 BILLION (1000/SEC)
- 200-300 MILLION

• Temperature Regulation

Female Reproductive Anatomy

Female Reproductive Anatomy

A. Ovary

Female gonad
site of egg
production

The Female Reproductive System

Female Reproductive Anatomy

Ovum

(plural: ova)

- Egg

Follicle -

Site in ovary that contains eggProduces estrogen

Corpus Luteum

After release of egg, follicle becomes a Corpus Luteum
Produces progesterone

B. Oviducts (Fallopian Tubes)

C. Uterus

- Thick smooth muscle layer
- Baby develops here!
- 1. Endometrium
 - Nutrient rich, vascular lining of uterus.
 - Builds up to prepare for baby and sloughs off if no baby is present.

Neck of uterus

2. Cervix

D. Vagina - Birth canal

E. Vestibule of Vagina

1. Labia majora

 Thick protective folds of skin

2. Labia minora

 Thin protective folds of skin

3. Clitoris

- Erectile tissue

Female Menstrual Cycle: General Characteristics

- When do women <u>begin</u> to menstruate?
- Average age is about 11 -13

- When do women stop menstruating?
- Menopause begins in late 40s / early 50s

Hormones Involved in Female Menstrual Cycle

Hormone	Produced in:	Function
1. Follicle Stimulating Hormon FSH	ne Anterior Pituitary Gland	Follicle development.
2. Luteinizing Hormone LH	APG	Ovulation (release of egg from follicle).
3. Estrogen	Ovary	 Coordination of uterus with follicle. Thickens Endometrial lining.
4. Progesterone		
	Ovary	1. Maintains thickness of endometrium.
		2. When no baby, lining breaks down and menstrual cycle begins.

What controls and regulates all four hormones?

Hypothalamus (in brain)

Menstrual Cycle VS Estrus (heat) in Mammals

- Menstrual Cycle (humans)
- Duration of ~28 days

- Receptive to sex throughout cycle
- If no baby: shedding, fluid and tissue release

• Estrus Cycle (Heat) (non-human mammals)

- 1, 2, 3 or more times per year depending on species.
- Only receptive to copulation when in heat.
- Reabsorption of tissues in some.

Gestational Hormones

Human Reproduction Fertilization to Birth

Baby Development

Fertilization Cleavage **Embryonic Stage Fetal Stage** Birth

Fertilization

- 1. Intercourse
- 2. Fertilization
 - a. Fusion of egg and sperm nuclei.
 - b. Zygote forms.
 - c. Takes place in oviduct.
- 3. Polyspermy
 - a. More than 1 sperm entering the egg.
- 4. Fast Block to Polyspermy
 - a. Calcium enters and causes electrical zap.
 - b. Sperm are temporarily stunned.
- 5. Slow Block to Polyspermy
 - a. Creation of Fertilization Membrane.
 - b. Keeps additional sperm out.

Cleavage

Rapid form of cell division, cells get smaller

1. When does it begin?

- a. Zygote Formation
- b. Day 1
- 2. When does it end ?
 - a. Implantation of blastula (hollow ball of cells)
 - b. Day 7
- 3. Where does it occur?
 - a. Oviduct and Uterus
- 4. Stages involved:

Zygote \rightarrow 2-cells, 4,8,16 \rightarrow morula \rightarrow blastula (aka blastocyst)

Cleavage

Cell Cleavage Process by which the number of cells in a developing embryo is multiplied through cell division.

From Egg to Embryo

From Egg to Embryo

Embryonic Stage

- 1. Timeline: Day 8 through end of second month
- 2. Location: Uterus
- 3. Purpose: Formation of body organs, symmetry and

shape.

D M.A. Hill, 2004

Embryonic Stages

Special thanks to Dr S. J. DiMarzo and Prof. Kohei Shiota for allowing reproduction of their research

Steps in Embryonic Stage

Outcome

Gastrulation

Formation of Germ Layers.

Extra Embryonic Membranes

Morphogenesis

Organogenesis

Somite Formation

Formation of membranes on the exterior of the embryoleads to formation of placenta and umbilical cord.

Formation of form/shape.

Formation of Organs.

Vertebrae formation.

Gastrulation

- Inward folding of Blastula
- 2. Formation of three Germ Layers

Amniotic

Ectoderm

Endoderm

Yolk cavity

- i. Ectoderm
- ii. Mesoderm
- iii. Endoderm

Blastocoel

Mesoderm

Endoderm

Cross section

Copyright @ Pearson Education, Inc., or its affiliates. All Rights Reserved.

During gastrulation, some cells

migrate from the ectoderm and

form the mesoderm.

3. Specialization of Cells

Germ Layer Functions

ECTODERM	MESODERM	ENDODERM

Germ Layer Functions

ECTODERM

- Epidermis of skin and its derivatives (including sweat glands, hair follicles)
- Epithelial lining of mouth and anus
- Cornea and lens of eye
- Nervous system
- Sensory receptors in epidermis
- Adrenal medulla
- Tooth enamel
- Epithelium of pineal and pituitary glands

MESODERM

- Notochord
- Skeletal system
- Muscular system
- Muscular layer of stomach and intestine
- Excretory system
- Circulatory and lymphatic systems
- Reproductive system (except germ cells)
- Dermis of skin
- Lining of body cavity
- Adrenal cortex

ENDODERM

- Epithelial lining of digestive tract
- Epithelial lining of respiratory system
- Lining of urethra, urinary bladder, and reproductive system
- Liver
- Pancreas
- Thymus
- Thyroid and parathyroid glands

Extra Embryonic Membranes

- a. Formation of membranes on the exterior of the embryo which leads to formation of:
- b. Umbilical Cord: A cord which is filled with blood vessels that connects the embryo/fetus with the placenta of the mother.

c. Placenta: Transports nourishment/O₂ from the mother and wastes/CO₂ away from the fetus.

Extra Embryonic Membranes

Morphogenesis

- Formation of body shape.
- Organogenesis
 - Formation of body organs.

Human embryo 7 weeks: Somite (vertebrae) formation

Embryonic Stage Summary

- Stage of Development?Embryonic
- When Does it Begin? Day 8
- When Does it End?2 Month / 8 weeks
- Where does it occur? Uterus
- What happens?

Produce Embryo

Embyronic Stage: Summary

Stage of Development	When Does it Begin?	When Does it End?	Where does it occur?	What happens?
?	Day 8	2 Months	?	Produce ?

Steps in Embryonic Stage	Outcome
?	Formation of ? Layers
?	Formation of ?/Shape
?	Formation of ?
Extra Embryonic Membranes	Lead to the formation of ? and ? cord
?	? formation

Embyronic Stage: Summary

Stage of Development	When Does it Begin?	When Does it End?	Where does it occur?	What happens?
Embryonic	Day 8	2 Months	Uterus	Produce Embryo

Steps in Embryonic Stage	Outcome
Gastrulation	Formation of Germ Layers
Morphogenesis	Formation of Form/Shape
Organogenesis	Formation of Organs
Extra Embryonic Membranes	Lead to the formation of placenta and umbilical cord
Somites	Vertebrae formation

Fetal Stage

- 1. When does it begin and end?
 - a. 3rd month—Birth of baby
- 2. Where does it occur?
 - a. Uterus
- 3. What happens?
 - a. GROWTH
 - b. Maturation of Organs and Organ Systems

(a) 5 weeks

(b) 14 weeks

(c) 20 weeks

Squibb 20 week ultrasound

Birth

- 1. When does this occur?
 - a. About 40th week

- 2. Position of baby and breech baby
- 3. Dilation Stage
- 4. Expulsion Stage
- 5. After-Birth Stage

Fetus in breech presentation

Birth: Dilation Stage

Birth: Expulsion Stage

2 Expulsion: delivery of the infant

Birth: After-Birth Stage

Output Delivery of the placental

General Birth Considerations

 What are Trimesters and how do they correspond to the stages we've discussed?

- What are Teratogens?
 - Substances that cause birth defects.

General Birth Considerations

- Identical Twins?
 - Zygote splits to form2 embryos.

Monozygotic (Monochorionic, Monoamniotic)

- Fraternal Twins?
 - 2 eggs fertilized by 2 sperm.

Dizygotic (Dichorionic, Diamniotic)