Lesson Check Answers

- 1. a redox reaction
- spontaneous redox reactions within the cell
- fuel cells, lead storage batteries, and dry cells
- 4. calcium
- 5. concentrated sulfuric acid;

$$Pb(s) + SO_4^{2-}(aq) \rightarrow PbSO_4(s) + 2e^{-}$$

Cathode:

$$PbO_{2}(s) + 4H^{+}(aq) + SO_{4}^{2-}(aq) + 2e^{-} \rightarrow PbSO_{4}(s) + 2H_{2}O(l)$$

- 6. 2H₂(g) + O₂(g) → 2H₂O(I); water is the product. H₂ is oxidized at the anode; O₂ is reduced at the cathode.
- 7. no reaction

Sample Problems

8. The half-reactions are

Oxidation: $Cr(s) \longrightarrow Cr^{3+}(aq) + 3e^{-}$

Reduction: $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$

Writing both half-cells as reductions:

$$Cr^{3+}(aq) + 3e^{-} \longrightarrow Cr(s)$$
 $E^{\circ}_{Cr^{3+}} = -0.74 \text{ V}$

$$Zn^{2+}(aq) + 2e^{-} \longrightarrow Zn(s)$$
 $E^{\circ}_{Zn^{2+}} = -0.76 \text{ V}$

$$E^{\circ}_{\text{cell}} = E^{\circ}_{\text{red}} - E^{\circ}_{\text{oxid}} = E^{\circ}_{\text{Zn}^{2+}} - E^{\circ}_{\text{Cr}^{3+}}$$

$$= -0.76 \text{ V} - (-0.74 \text{ V}) = -0.02 \text{ V}$$

 E_{cell}° < 0, so the reaction is not spontaneous.

Another way to calculate: $E^0_{cell} = E^0_{SRP} + E^0_{SOP}$... negate the oxidation SRP. $E^0_{cell} = E^0_{SRP (Zn)} + E^0_{SOP (Cr)} = -0.76 \text{ V} + 0.74 \text{ V} = -0.02 \text{ V}$

9. The half-reactions gre

Oxidation: Fe(s) \longrightarrow Fe²⁺(aq) + 2e⁻

Reduction: $Co^{2+}(aq) + 2e^{-} \longrightarrow Co(s)$

Writing both half-cells as reductions:

$$Fe^{2+}(aq) + 2e^{-} \longrightarrow Fe(s)$$
 $E^{\circ}_{Fe^{2+}} = -0.44 \text{ V}$

$$Co^{2+}(aq) + 2e^{-} \longrightarrow Co(s)$$
 $E^{\circ}_{Co^{2+}} = -0.28 \text{ V}$

$$E^{\circ}_{\text{cell}} = E^{\circ}_{\text{red}} - E^{\circ}_{\text{oxid}} = E^{\circ}_{\text{Co}^{2+}} - E^{\circ}_{\text{Fe}^{2+}}$$

$$= -0.28 \text{ V} - (-0.44 \text{ V}) = +0.16 \text{ V}$$

 $E_{\text{cell}}^{\circ} > 0$, so the reaction is spontaneous.

Another way to calculate: $E^0_{cell} = E^0_{SRP} + E^0_{SOP}$... negate the oxidation SRP. $E^0_{cell} = E^0_{SRP (Co)} + E^0_{SOP (Fe)} = -0.28 \text{ V} + 0.44 \text{ V} = +0.16 \text{ V}$

10. Cu^{2+} is reduced, and Al is oxidized.

Oxidation: Al(s) \longrightarrow Al³⁺(aq) + 3e⁻

Reduction: $Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)$

Writing both half-cells as reductions:

$$2[Al(s) \longrightarrow Al^{3+}(aq) + 3e^{-}]$$

$$3[Cu^{2+}(aq) + 2e^{-} \longrightarrow Cu(s)]$$

$$2Al(s) \longrightarrow 2Al^{3+}(aq) + 6e^{-}$$

$$3Cu^{2+}(aq) + 6e \longrightarrow 3Cu(s)$$

$$2Al(s) + 3Cu^{2+}(aq) \longrightarrow 2Al^{3+}(aq) + 3Cu(s)$$

11. Ag⁺ is reduced, and Cu is oxidized.

The half-reactions are

Oxidation:
$$Cu(s) \longrightarrow Cu^{2+}(aq) + 2e^{-}$$

Reduction:
$$Ag^+(aq) + e^- \longrightarrow Ag(s)$$

Writing both half-cells as reductions:

$$Cu(s) \longrightarrow Cu^{2+}(aq) + 2e^{-}$$

$$2[Ag^{+}(aq) + e^{-} \longrightarrow Ag(s)]$$

$$Cu(s) \rightarrow Cu^{+2}(aq) + 2e$$

$$2Ag^{+}(aq) + 2e^{-} \rightarrow 2Ag(s)$$

$$Cu(s) + 2Ag^{+}(aq) \rightarrow Cu^{+2}(aq) + 2Ag(s)$$

Notice that copper is oxidized (because it is the more active metal) and will reduce the silver.

12.
$$E^{\circ}_{\text{cell}} = E^{\circ}_{\text{red}} - E^{\circ}_{\text{oxid}} = E^{\circ}_{\text{Cu}^{2+}} - E^{\circ}_{\text{Al}^{3+}}$$

= 0.34 V - (-1.66 V) = +2.00 V

Another way to calculate:
$$E^0_{cell} = E^0_{SRP} + E^0_{SOP}$$
 ... negate the oxidation SRP. $E^0_{cell} = E^0_{SRP (Cu)} + E^0_{SOP (Al)} = +0.34 \text{ V} + 1.66 \text{ V} = +2.00 \text{ V}$

Aluminum is a more active metal than copper so aluminum will be oxidized and will reduce the copper.

13.
$$E^{\circ}_{\text{cell}} = E^{\circ}_{\text{red}} - E^{\circ}_{\text{oxid}} = E^{\circ}_{\text{Ag}^{+}} - E^{\circ}_{\text{Cu}^{2+}}$$

= 0.80 V - (+0.34 V) = +0.46 V

Another way to calculate:
$$E^0_{cell} = E^0_{SRP} + E^0_{SOP}$$
 ... negate the oxidation SRP. $E^0_{cell} = E^0_{SRP\,(Ag)} + E^0_{SOP\,(Cu)} = +0.80\ V - 0.34\ V = +0.46\ V$

Copper is a more active metal than silver so copper will be oxidized and will reduce the silver.

Lesson Check Answers

- 14. Electrical potential of cell results from competition for electrons between two half-cells.
- by connecting it to a standard hydrogen electrode and measuring the cell potential
- 16. If the cell potential for a redox reaction is positive, the reaction is spontaneous; if it is negative, the reaction is nonspontaneous.
- 17. spontaneous; $E_{coll}^{\circ} = +0.71 \text{ V}$

- **18.** $2\text{Li}(s) + \text{Mg}^{2+}(aq) \rightarrow \text{Mg}(s) + 2\text{Li}^{+}(aq);$ $E_{cell}^{\circ} = +0.68$
- 19. There is an positive electrical potential between the negative and positive terminals of the battery. Cell reaction:

Pb + PbO₂ +
$$2H_2SO_4^{2-} \rightarrow 2PbSO_4 + 2H_2O$$
; $E_{cell}^o = +2.05 \text{ V}$

17.
$$2A1^{+3}(aq) + 3Mg^{0}(s) \rightarrow 2Al(s) + 3Mg^{+2}(aq)$$

Oxid $\frac{1}{2}$ rxn: $3[Mg^0 \rightarrow Mg^{+2} + 2e-]$

Red $\frac{1}{2}$ rxn: $2[Al^{+3} + 3e \rightarrow Al^{0}]$

$$E_{cell}^0 = E_{SRP}^0 + E_{SOP}^0 \dots$$
 negate the oxidation SRP.

$$E_{\text{cell}}^{0} = E_{\text{SRP (Al)}}^{0} + E_{\text{SOP (Mg)}}^{0} = +2.37 \text{ V} + (-1.66 \text{ V}) = +0.71 \text{ V}$$

This is a spontaneous reaction.

Magnesium is a more active metal than Aluminum so magnesium will be oxidized and will reduce the aluminum.

18.
$$2\text{Li}(s) + \text{Mg}^{+2}(aq) \rightarrow \text{Mg}(s) + 2\text{Li}^{+}(aq)$$

Oxid $\frac{1}{2}$ rxn: $2[Li^0 \rightarrow Li^+ + e^-]$

Red $\frac{1}{2}$ rxn: $Mg^{+2} + 2e^{-} \rightarrow Mg^{0}$

$$E^{0}_{cell} = E^{0}_{SRP} + E^{0}_{SOP} \dots$$
 negate the oxidation SRP.

$$E^{0}_{cell} = E^{0}_{SRP (Mg)} + E^{0}_{SOP (Li)} = -2.37 \text{ V} + 3.05 \text{ V} = +0.68 \text{ V}$$

This is a spontaneous reaction.

Lithium is a more active metal than magnesium so lithium will be oxidized and will reduce the magnesium.

- A voltaic cell uses an electrochemical reaction to produce electrical energy; an electrolytic cell uses electrical energy to bring about a chemical change.
- to separate elements from compounds and to plate, purify, and refine metals
- electrolytic cell anode (+); voltaic cell anode (–)
- Reduction always occurs at the cathode.
- 24. Anode: C(s) + 2O²-(l) → CO₂(g) + 4e⁻ Cathode: 3e⁻ + Al³+(l) → Al(l) Adding cryolite to aluminum oxide results in a mixture that melts at a much lower temperature (1012°C) than pure aluminum oxide (2045°C).
- 25. Yes, the electrical energy produced in a voltaic cell can do work. An electrolytic cell does not produce free energy unless an electrical current is supplied.