Chapter 4 Atomic Structure

Section 4.1 Studying Atoms

(pages 100-105)

This section discusses the development of atomic models.

Reading Strategy (page 100)

Summarizing As you read, complete the table about atomic models. For more information on this Reading Strategy, see the **Reading and Study Skills** in the **Skills and Reference Handbook** at the end of your textbook.

Atomic Models			
Scientist	Evidence	Model	
Dalton	Ratio of masses in compounds	Indivisible, solid spheres	
Thompson	Deflected beam	Negative charges evenly scattered through positively charged mass of matter (plum pudding model)	
Rutherford	Deflection of alpha particles passing through gold foil	Positive, dense nucleus	

Ancient Greek Models of Atoms (page 100)

1. Democritus named the smallest particles of matter <u>atoms</u> because they could not be divided.

Dalton's Atomic Theory (page 101)

2. Is the following sentence true or false? John Dalton gathered evidence for the existence of atoms by measuring the masses of elements that

reacted to form compounds. ______

3. Dalton's theory suggests that all matter is made up of individual

particles called <u>atoms</u>, which cannot be <u>divided</u>

4. Circle the letters of the sentences that represent main points of Dalton's theory of atoms.

(a.) All elements are composed of atoms.

- (b) In a particular compound, atoms of different elements always combine the same way.
- c. All atoms have the same mass.

Name	Class	Date
Chapter 4 Atomic S	tructure	
Thomson's Mode	of the Atom (pages 102	2–103)
5. Use the words in	n the box below to fill in th	e blanks. Objects with like
electric charges	<u>repel</u> , and objects v	vith opposite electric
charges <u>attrac</u>	<u></u> .	

attract	deflect
reflect	repel

6. Thomson concluded that the particles in the glowing beam had a(n)

<u>negative</u> charge because they were attracted to a positive

plate.

- **7.** Circle the letter of the sentences that describe Thomson's model of the atom.
 - (a.) An atom is filled with positive matter.
 - b. An atom is mostly space with a small nucleus.
 - (c.) Negative charges are scattered throughout an atom.

Rutherford's Atomic Theory (pages 104-105)

- **8.** An <u>alpha particle</u> is a fast-moving particle that carries a positive charge.
- **9.** Circle the letters of the sentences that describe what happened when Marsden directed a beam of particles at a piece of gold foil.

(a.) More alpha particles were deflected than expected.

- b. None of the alpha particles were deflected.
- c.)Some alpha particles bounced back toward the source.
- **10.** Circle the letter of the sentence that states what Rutherford concluded from the gold foil experiment.
 - a. An atom's negative charge is concentrated in its nucleus.
 - (b.) An atom's positive charge is concentrated in its nucleus.
 - c. An atom's positive charge is spread evenly throughout the atom.