Go to the "Slide Show" shade above

Click on "Play from Beginning"

Intro to Biology

Chapter 3: Basic Biochemistry of the Molecules of Life

molecule

Biochemistry

A(n) _____ is a pure substance that cannot be broken down into a simpler form

The FOUR most abundant elements in nature: _____.

_____ are the simplest chemical unit. Atomic number is the # of ______ in the nucleus of an atom. Atomic _____ includes protons and neutrons in the nucleus. A charged atom is called a(n) _____.

Water is a _____ molecule that exhibits _____ bonds, causing solid ice to be _____ dense than liquid water. Water has high _____ (sticks to other things) and ______ (sticks to itself) and resists _____ in temperature.

Water is the universal _____ that determines acids (____ ions) & bases (____ ions). pH below ___ is acidic. _____ resist pH changes.

- A(n) <u>element</u> is a pure substance that cannot be broken down into a simpler form
- The FOUR most abundant elements in nature: <u>CHON</u>.
- <u>Atoms</u> are the simplest chemical unit. Atomic number is the # of <u>protons</u> in the nucleus of an atom. Atomic <u>mass</u> includes protons and neutrons in the nucleus. A charged atom is called a(n) <u>ion</u>.
- Water is a <u>polar</u> molecule that exhibits <u>hydrogen</u> bonds, causing solid ice to be <u>less</u> dense than liquid water. Water has high <u>adhesion</u> (sticks to other things) and <u>cohesion</u> (sticks to itself) and resists <u>changes</u> in temperature.
- Water is the universal <u>solvent</u> that determines acids (<u>H+</u> ions) and bases (<u>OH-</u> ions). pH below $\underline{7}$ is acidic. <u>Buffers</u> resist pH changes.

Lesson Objectives

By the end of this lesson, you should be able to:

- Describe the structures and functions of each of the four groups of Macromolecules of Life: Carbohydrates, Lipids, Proteins, and Nucleic Acids.
- Investigate how the four groups of Macromolecules of Life are metabolized by cells.

Science Practice: Biomolecules Lab

Organic Molecules

- Life's molecular diversity is based on the properties of the **CARBON** atom.
- Almost all the molecules a cell makes are composed of carbon bonded to H^{*}
 - other carbons
 - Hydrogen, oxygen, & nitrogen

Carbon-based molecules (when combined with hydrogen or possessing a long carbon chain including oxygen or nitrogen) are called <u>ORGANIC MOLECULES</u>.

Carbon Atom

CARBON is essential for life "the backbone of life" "*carbon-based life forms*"

- Contains 4 electrons in its outer shell (*for bonding*).
- Each carbon atom creates 4 bonds: single, double, or triple bonds.
- "Swiss Army Knife of Chemistry"

Macromolecules or Polymers

 Macromolecules (*larger*) are built from smaller molecules called MONOMERS ("one unit").

Organic Reactions

Anabolic Reactions: BUILD macromolecules from monomers.

Catabolic Reactions: BREAK macromolecules into its components (monomers).

Dehydration Synthesis

- Also called a "condensation reaction"
- Anabolic Reactions which form macromolecules by combining monomers by "removing water".

Hydrolysis

• **Catabolic** Reactions which break down macromolecules by removing monomers one at a time [opposite of condensation reaction].

Separates monomers by "adding water".

What does "organic" mean in Biology?

What organic reaction took place? \rightarrow

What organic reaction took place \downarrow

(Distinguish monomer, polymer, macromolecule)

What does "organic" mean in Biology? Contains carbon (& hydrogen, oxygen, nitrogen)

What organic reaction took place? → Catabolism, hydrolysis

What organic reaction took place \downarrow (*Distinguish monomer, polymer, macromolecule*)

Biochemical Molecules

ORGANIC MOLECULES

Category	Monomer	Polymer
Carbohydrates		
Proteins		
Lipids		
Nucleic Acids		

Biochemical Molecules

ORGANIC MOLECULES

Category	Monomer	Polymer
Carbohydrates	monosaccharide	polysaccharide
Proteins	amino acids	polypeptide
Lipids	Fatty acid, Glycerol	Lipid
Nucleic Acids	Nucleotide	Nucleic acid

Carbohydrates

• Important Source of Energy for all life forms (e.g. glucose).

- Made of only Carbon, Hydrogen, and Oxygen
 (1:2:1) - CH₂O [C + water]
- Includes simple sugars and starches (complex sugars).
- Classified according to the number of sugar molecules they contain.
- Monomer: Monosaccharides

Monosaccharides

- Called "Simple Sugars"
- MONOMERS or Building Blocks of Carbohydrates
- <u>Glucose</u>: Universal Fuel of Cells C₆H₁₂O₆
- Fructose (fruit sugar) and Galactose (milk sugar)
- Exist in the following forms:
 - Cyclic (aqueous in cells)
 - Straight Chain

Carbohydrate Synthesis

 Cells link monosaccharides together by Dehydration Synthesis to form more complex sugars and polysaccharides.

Disaccharides

- "Double sugar"
- Formed by joining two monosaccharides by Dehydration Synthesis.
- Sucrose (table sugar)
- Lactose (milk sugar)
- Maltose (grain sugar)
- Form a bond called a **GLYCOSIDIC bond.**

Sucrose (Glucose-fructose) Lactose (Galactose-glucose)

Maltose (Glucose-glucose)

Most simple sugars in nature are disaccharides

Hydrolysis of Disaccharides

"Many Sugars"

- Chains of thousands of Monosaccharides.
- Also called "Complex Carbohydrates".
- Functions:
 - Energy Storage Molecules
 - Structural Molecules

Too large to leave the cell.

Energy Storage Molecules: Starch

- Chain of molecules of Glucose formed by Plants.
- This is the way plants store excess glucose.
- We consume it in products like potatoes and carrots.

Starch

Energy Storage Molecules:

Glycogen

- Chain of molecules of Glucose formed by Animals.
- This is the way animals store excess glucose.
- Stored in liver and muscles.

Structural Molecules: Cellulose

- Chain of molecules of Glucose.
- Primary constituent of Plant Cell Walls.
- Major component of wood and paper.
- Indigestible by most animals.

DO YOU EAT WOOD?

Types of Carbohydrates

There are three kinds of carbohydrates.

Monosaccharides

Disaccharides

Polysaccharides

Explain how biochemical molecules are formed.

List the general types of carbohydrates from simplest to most complex, giving examples/definitions of each.

What monomer exists in all the above di- & polysaccharides? The TWO major functions of complex sugars:

Explain how biochemical molecules are formed.

Monomers combined through dehydration synthesis to form polymers.

List the general types of carbohydrates from simplest to most complex, giving examples/definitions of each. Monosaccharide (glucose, fructose, galactose), Disaccharide (sucrose [table], maltose [grain], lactose [milk]) Polysaccharide (starch [plant excess glucose], glycogen [animal excess glucose], cellulose [plant cell walls])

What monomer exists in all the above di- & polysaccharides? *Glucose*

The TWO major functions of complex sugars:

Energy Storage Molecules & Structural Molecules

Lipids

- Contain Carbon, Hydrogen, & Oxygen.
- Hydrophobic "Water-fearing"; Insoluble in water.
- Protects & insulates body organs.
- Mostly Energy-Storage molecules.
- Type of Lipid we will consider: Fats (Triglycerides)

Biochemistry

Biochemistry

Lipids are composed of two MONOMERS, glycerol (1 molecule) + fatty acids tails (3)

The components of fatty acids (2 essential features):

- 1. A long hydrocarbon chain.
 - a. Chain length ranges from 4 to 30 carbons
 - b. The chain is typically linear, containing an even number of carbon atoms bonded to each other.
- 2. A carboxylic acid group

long hydrocarbon chain

carboxylic acid group

Essential features of a fatty acid

Types of Fatty Acids tails:

- Saturated fatty acids have the maximum number of hydrogens bonded to the carbons (all <u>single</u> <u>covalent bonds</u> between carbons); Animal Fats.
- Unsaturated fatty acids contain one or more double bonds; Oils.

saturated fatty acid

Types of Fatty Acids

Saturated fatty acids liquids at room temperature

Unsaturated fatty acids Solids at room temperature

SATURATED FAT

UNSATURATED FAT

Butter, coconut oil, whole milk, meat, peanut, butter, margarine, cheese, vegetable oil, fried foods, & frozen dinners Avocado, soybean oil, canola oil and olive oil, sunflower oil, fish oils walnuts, flax, & red meats

Triglycerides are made by the Dehydration Synthesis of 1 Glycerol + 3 Three Fatty Acids forming ESTER BONDS

Proteins

- Account for over half of the body's organic matter (skin, bones, hair, muscle, organs, tissues, enzymes, hormones)
- Main Functions:
 - Provide the construction materials for body tissues.
 - Play a vital role in cell function.
 - Act as enzymes, hormones, and antibodies.
 - Contain Carbon, Hydrogen, Oxygen, Nitrogen, and sometimes Sulfur.
- MONOMERS: Amino Acids (20 types in humans)

Proteins

Amino acids have a central carbon with 4 groups attached to it:

Amino Group: NH₂

Carboxyl Group: -COOH

Hydrogen: H

Side group: R

Proteins

- Cells link amino acids together to make proteins by dehydration synthesis.
- PEPTIDE BONDS form to hold the amino acids together.

- The **functions** of different types of proteins depend on their individual **shapes**.
- A **polypeptide chain** contains hundreds or thousands of **amino acids** linked by **peptide bonds**.
- The amino acid sequence causes the polypeptide to assume a particular shape.

- Sequences with fewer than 50 amino acids are generally referred to as peptides, while the terms protein or polypeptide are used for longer sequences.
- The amino acid sequence makes up the primary structure of the protein.
- Stretches or strands of peptides compose secondary structure, depending on hydrogen bonding.

- The overall three-dimensional shape of an entire protein molecule is the tertiary structure. The protein molecule will bend and twist in such a way as to achieve maximum stability or lowest energy state.
- The quaternary structure refers to how these protein subunits interact with each other and arrange themselves to form a larger aggregate protein complex.

- If a protein's shape is altered, it can no longer function.
- In the process of **denaturation**, a protein
 - unravels
 - loses its specific shape
 - loses its function.
- Proteins can be denatured by changes in salt concentration, changes in pH, or high heat.

QUICK CHECK

What are the monomers of lipids?

- Function of Lipids?
- Distinguish the types of fatty acids.

- Monomer & function of proteins?
- Describe how to produce an amino acid.
- What determines the shape of proteins? What is denaturation & what causes it?

Review

What are the monomers of lipids?

Glycerol (1) & fatty acids (3)

Function of Lipids?

Protects, insulates, stores energy

- Distinguish the types of fatty acids.
- Saturated (all single bonds with carbon) ... liquids, animal fat Unsaturated (at least one double/triple bond with carbon) ... solids, oils
- Monomer & function of proteins?
- Amino acids; construction materials, enzymes, hormones, antibodies
- Describe how to produce an amino acid.
- Amine group + carboxyl group (dehydration synthesis) forming a peptide bond
- What determines the shape of proteins? Amino acid sequence
- What is denaturation & what causes it?
- A protein's shape is altered; changes in salt concentration, changes in pH, high heat

Cell Nucleus Containing 23 Pairs of Chromosomes

NUCLEIC ACIDS

DNA Strand

/

Genes

Chromosomes

Bases

Biochemistry

- Make up the **GENES**: units of inheritance.
- Determine what type of organism you will be.
- Controls growth and development mainly by dictating protein structure.
- Composed of: Carbon, Hydrogen, Oxygen, Nitrogen, and Phosphorous.
- Two types exist:

Deoxyribonucleic Acid (DNA) Ribonucleic Acid (RNA)

Built from NUCLEOTIDES (Monomers):

- Pentose (5-carbon) Sugar
 - Ribose in RNA
 - Deoxyribose in DNA
- Phosphate Group
- Nitrogenous Base:
 - A = Adenine
 - **G** = **G**uanine
 - C = Cytosine
 - **T = Thymine** (only in DNA)
 - **U = Uracil** (only in RNA)

Deoxyribonucleic acid (DNA)

- The genetic material found within the cell's nucleus.
- Provides instructions for every protein in the body.
- Organized by complimentary bases to form a <u>double</u>stranded helix.
- Contains the sugar *deoxyribose* and the nitrogen bases
 Adenine, Thymine, Cytosine, & Guanine.
- Replicates before cell division.

Adenine

Guanine

Ribonucleic acid (RNA)

- Carries out DNA's instructions for Protein Synthesis (Translation) in the cytoplasm.
- Created from a template of DNA (Transcription) in the nucleus.
- Organized by complimentary bases to form a <u>single</u>-stranded helix.
- Contains *ribose* sugar and nitrogen bases

Adenine, Uracil, Cytosine, & Guanine.

Bonding in Nucleic Acids

Bonding in Nucleic Acids Sugar-Phosphate Backbone

Sugar of one Nucleotide subunit is connected to Phosphate of the next nucleotide (dehydration synthesis).

Biochemistry

What elements are each macromolecule made of?

What are the components of a nucleotide?

Which nitrogenous bases bond with which ... & how?

Distinguish between RNA & DNA

What is the ultimate function of nucleic acids?

Review

What elements are each macromolecule made of? Carbohydrates \rightarrow C, H, O ... 1:2:1

- Lipid → C, H, O
- Proteins \rightarrow C, H, O, N, S
- Nucleic Acids $\rightarrow C$, H, O, N, P
- What are the components of a nucleotide? Sugar (ribose, deoxyribose), phosphate group, nitrogen base
- Which nitrogenous bases bond with which ... & how?
- A :: T with 2 H bonds; G ::: C with 3 H bonds ... RNA has U instead of T
- Distinguish between RNA & DNA
- *RNA: single stranded; mainly operates in the cytoplasm DNA: double stranded; located in the nucleus*
- What is the ultimate function of nucleic acids?
- **Protein synthesis; controlling cell function**

Review: General Terms

Review: General Terms

ORGANIC MOLECULES

Category	Monomer	Polymer
Carbohydrates	monosaccharide	polysaccharide
Proteins	amino acids	polypeptide
Lipids	Fatty acid, Glycerol	Lipid
Nucleic Acids	Nucleotide	Nucleic acid

Biological macromolecule	Function	Monomer	Examples
?	Dietary energy; storage; plant structure Bonds: ?		Monosaccharides: dissaccharides: Polysaccharides:
\$	Long-term energy storage (for fats); hormones (for steroids) <u>Bonds</u> : ?	H-C-OH H-C-OH H-C-OH H-C-OH H-C-OH Components of a fat molecule	\$

Biological macromolecule	Function	Monomer	Examples
Carbohydrates	Dietary energy; storage; plant structure <u>Bonds</u> : Glycosidic	H OH OH CH2OH H H OH CH2OH H H OH CH2OH H H CH2OH H H CH2OH H H CH2OH H H CH2OH H H CH2OH H H CH2OH H H CH2OH H H CH2OH H H CH2OH H H CH2OH H CH2OH H CH2OH H CH2O	Monosaccharides: glucose, fructose. dissaccharides: lactose, sucrose. Polysaccharides: starch, cellulose. glycogen
Lipids	Long-term energy storage (for fats); hormones (for steroids) <u>Bonds</u> : Ester	н-с-он н-с-он н-с-он H-с-он Glycerol Components of a fat molecule	Fats, oils, steroids

Biological macromolecule	Function	Monomer	Examples
?	Enzymes, structure, storage, contraction, transport, etc. Bonds: ?	group group H,H,O,OH Kide group	? (an enzyme), ?
\$	Information storage <u>Bonds</u> : ?	P A Nucleotide	\$

Biological macromolecule	Function	Monomer	Examples
Proteins	Enzymes, structure, storage, contraction, transport, etc. <u>Bonds</u> : Peptide	Amino Carboxyl group group H H G G H Side group Amino acid	Lactase (an enzyme), hemoglobin
Nucleic acids	Information storage <u>Bonds</u> : Hydrogen	Phosphate Base A Sugar Nucleotide	DNA, RNA