

Chapter 10 Chemical Quantities

The Mole: A Measurement of Matter Mole-Mass and Mole-Volume Relationships Percent Composition and Chemical Formulas

Topics:

1. Molar Quantities

Objectives:

1. Understand and utilize the mole in mathematical computations according to the mole concept (Avogadro's Number).

2. Calculate Molar Mass of Elements and Compounds. Interconvert moles and mass.

3. Calculate Molar Volume at STP. Interconvert moles and liters, molar mass and density.

Name Examples of Standards in Real Life

Name Examples of Standards in Real Life

- Safety standards
- Quality standards
- Standards of Use
- Inclusion standards (who can Driver's lic use it) Gas is sole
- **Sustainability Standards**
- **Privacy Standards**
- **Electrical Standards**

Boarding pass on an airline Passport Driver's license Gas is sold by the gallon Paying by credit card Vehicle standards (mirrors, seat belts, lights, etc.)

How Are Scientists Able to Count the Number of Particles in Matter?

	JJ	T	
	2		J
13			Ta

Avogadro's Number N_a

 $= 6.02 \times 10^{23}$

GET YOUR CALCULATORS READY!!

Measuring Matter

Chemistry is both a **qualitative** and a **quantitative** science, meaning we **observe and describe matter**, and we **measure and quantify matter**.

To effectively measure and quantify matter, scientists use **STANDARDS**. Just as a "meter" is the standard unit of distance in the Metric system, scientists use the "MOLE" as a standard of chemical quantities.

Practical Example of Measuring Matter

Apples can be measured in different ways.

- At a fruit stand, they are often sold by **number**.
- In a supermarket, you usually buy them by weight or **mass**.
- At an orchard, you can buy apples by **Volume**.
- Using factor labeling we can interchange the various measurements.
- Assume that 1 dozen apples = 2.0 kg = 0.20 bushels
- Create conversion factors:

Practical Example of Measuring Matter

Apples can be measured in different ways.

At a fruit stand, they are often sold by **number**.

In a supermarket, you usually buy them by weight or mass.

At an orchard, you can buy apples by volume.

Using factor labeling we can interchange the various measurements. Assume that 1 dozen apples = 2.0 kg = 0.20 bushels

1 dozen apples	2.0 kg apples	1 dozen apples
12 apples	1 dozen apples	0.20 bushel apples
1 doz/2.0 kg =	2.0 kg/1 doz = 7	12 apples/2.0 kg

2.0 kg/0.20 B = 0.2 B/1 doz = 0.20 B/2.0 kg

Practical Example of Measuring Matter

From the conversion factors, one may determine **number**, **mass**, or **volume** depending on what

is given.

Therefore, scientists need a STANDARD of comparison. [e.g. just as the Spirit and the Bible are the standard for the universe.]

The Mole

The standard for mathematical (quantitative) measurement in chemical equations is the mole.

A mole (mol) of a substance is the SI unit for measuring the amount of a substance and is based on **Avogadro's number**.

The number of particles in a mole is

 $N_a = 6.022 \times 10^{23}$

... particles, atoms, molecules, you name it

The Mole

Avogadro's number.

 $N_a = 6.022 \times 10^{23}$

... particles, atoms, molecules, you name it One mole of anything is N_a of that item.

A mole refers to a specific quantity (count / **number**, **mass** in grams, or **volume** in liters. The mole concept is analogous to any set unit ... e.g. a dozen (*12 of anything*)

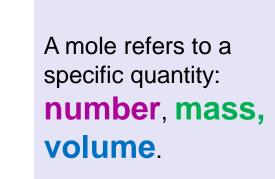
Happy Mole Day! (October 23)

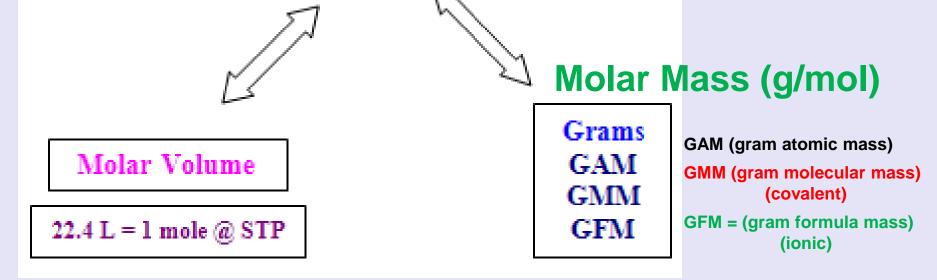
http://somup.com/cF6Qr8nnzh (1:58)

Molar Quantities

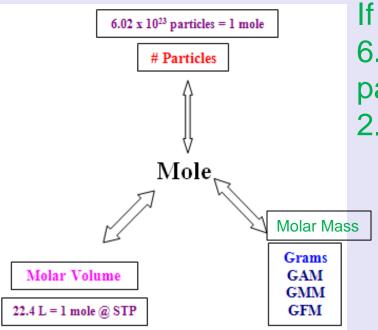
1 Hamburger 2 Buns 2 Headlights 3 Strips of Bacon 3 Seats 4 Pickles 1 MiniVan 10 Hamburgers Give the # Bacon Bacon Pickles MiniVans Hamburgers Bacon Pickles MiniVans Hamburgers Bacon Pickles MiniVans Hamburgers Bacon Pickles Headlights Seats Doors MiniVans 12 Tires Doors Its Bacon Pickles Headlights Doors Seats MiniVans 12 Tires Doors Doors Hamburgers Bacon Pickles Headlights Its Bacon Doors MiniVans 18 Seats MiniVans Tires Doors Doors		ple Analogy he table belov	N:		
4 Pickles 1 MiniVan 4 Tires 0 Hamburgers Give the # 5 Doors Buns Bacon MiniVans Seats Pickles MiniVans Tires 40 Buns 20 Doors Hamburgers Bacon Pickles MiniVans MiniVans 12 Tires Doors 18 Bacon Pickles Headlights MiniVans 12 Tires Doors 18 Seats MiniVans Tires Doors Doors Hamburgers Buns Hamburgers Buns Hamburgers Buns MiniVans Tires Doors 20 Headlights Doors Doors				-	
S Doors S Doors I Hamburgers Buns MiniVans Headlights Doors Doors Hamburgers Buns MiniVans Doors 20 Headlights Seats Hamburgers					

NOTE:


The number of hamburgers & minivans were the STANDARDs of comparison. It works the same way using "Moles". This is why we use **COEFFICIENTS** in chemical equations.

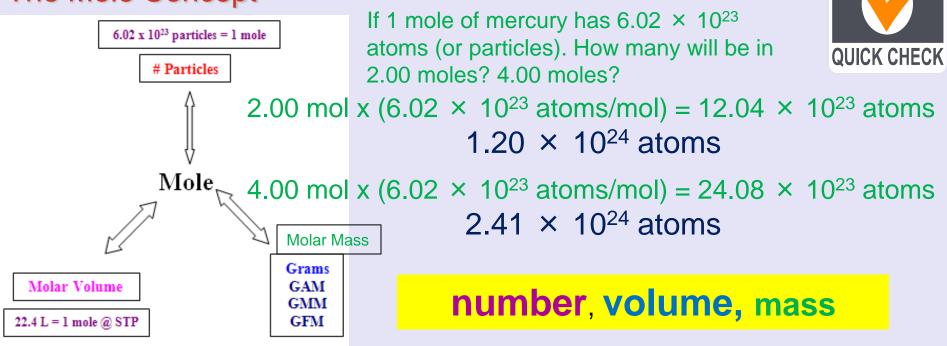

Simple Analogy Fill in the table below:

40 Pickles 4 MiniVans 16 20 Doors	llights Seats 5 Tires
Image: A pickles Image: A pickles 4 Pickles 1 MiniVan 4 Dickles 1 MiniVan 6 Dive the # 5 Doors 20 Buns 8 Head 30 Bacon 12 40 Pickles 1 MiniVans 20 Doors	llights Seats 5 Tires
5 Doors 5 Doors 10 Hamburgers 30 Buns 30 Bacon 4 MiniVans 20 Buns 30 Bacon 4 MiniVans 20 Doors	llights Seats 5 Tires
Give the # 10 Hamburgers 20 Buns 8 Head 30 Bacon 12 40 Pickles 4 MiniVans 16 20 Doors	llights Seats 5 Tires
20 Buns 8 Head 30 Bacon 12 40 Pickles 4 MiniVans 20 Doors	Seats Tires
10 Hamburgers 30 Bacon 12 40 Pickles 4 MiniVans 16 20 Doors	Seats Tires
40 Pickles 4 MiniVans 16	ó Tires
20 Door	
	s
10 . 70	
40 Buns	
20 Hamburgers 60 Bacon 6 Head	-
	Seats
3 MiniVans 12 Tires	
	Doors
6 Hamburgers 18 Bacon	
24 Pickles 12 Head	-
18 Seats	
	Tires
	Doors
12 Pickles	
20 Headlig	
) Seats
) Tires
Pickles 50	Doors



 6.02×10^{23} particles = 1 mole

Particles

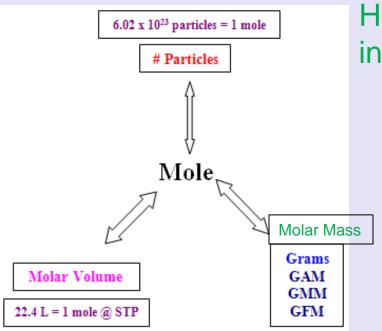

Mole

If 1.00 mole of mercury has 6.02×10^{23} atoms (or particles). How many will be in 2.00 moles? 4.00 moles?

If 22.4 L is 1.00 mole of a gas, how many liters are in 5.00 moles? 10.0 moles? How many grams are in 1.00 mole of Copper? (*Use Periodic Table*) 3.00 moles? 6.00 moles?

If 22.4 L is 1.00 mole of a gas, how many liters are in 5.00 moles? 10.0 moles?

5.00 mol x 22.4 L/mol = 112 liters

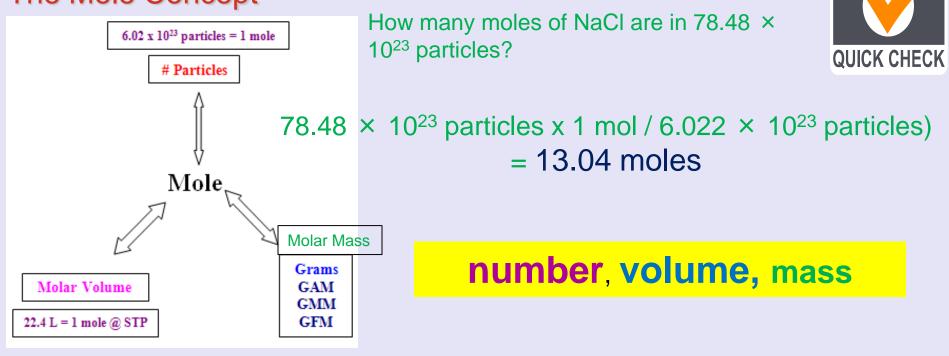

10.0 mol x 22.4 L/mol = 224 liters

How many grams are in 1.00 mole of Copper? (Use Periodic Table) 3.00 moles? 6.00 moles?

1.00 mol Cu = 63.5 g

 $3.00 \text{ mol } \times 63.5 \text{ g/mol} = 191 \text{ g}$

6.00 mol x 63.5 g/mol = 381 g



How many moles of $CO_{2(g)}$ are in 356 Liters?

How many moles of NaCl are in 78.48 \times 10²³ particles?

How many moles of calcium are there if one has 242 g?

How many moles of $CO_{2(g)}$ are in 356 Liters?

356 L x 1 mol/22.4 L = 15.9 moles

How many moles of calcium are there if one has 242 g?

242 g Ca x 1 mol/40.08 g = = 6.04 moles

The Chemist's Dozen

mole (mol): the SI unit for the amount of a substance; a mole is defined as the number of atoms in 12 g of C-12, or 6.02×10^{23}

GMM

1 mole Mg ? g ? atoms ? L if a gas 1 mole H₂O ? g ? molecules ? L if a gas **GFM**

1 mole NaCl ? g ? formula units ? L if a gas

The Chemist's Dozen

mole (mol): the SI unit for the amount of a substance; a mole is defined as the number of atoms in 12 g of C-12, or 6.02×10^{23}

GMM

1 mole Mg Periodic Table \rightarrow 24.31 g 6.02 × 10²³ atoms 22.4 L if a gas

 $1 \text{ mole } H_2O$ 2(1.008) + 16.00 = 18.01 g 6.02 × 10²³ molecules 22.4 L if a gas

1 mole NaCl 22.99 + 35.45 = 58.44 g 6.02 × 10²³ formula units 22.4 L if a gas

Enrichment

One atom of carbon-12 has a mass of 12.00 amu. How many atoms of carbon-12 are in 12.00 g? $[1.66 \times 10^{-24} \text{ g} = 1 \text{ amu}]$

• Set up calculation:

Cancel units and solve:

One atom of carbon-12 has a mass of 12.00 amu. How many atoms of carbon-12 are in 12.00 g?

Set up calculation (use AGES & factor label):

12.00 g C-12×
$$\frac{1 \text{ amu}}{1.66 \times 10^{-24} \text{ g}} \times \frac{1 \text{ atom C-12}}{12.00 \text{ amu}}$$

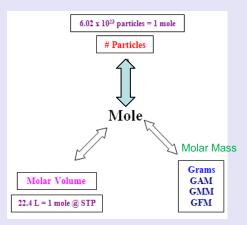
Cancel units and solve:

12.00 g/ C-12×
$$\frac{1}{1.66 \times 10^{-24}}$$
g/× $\frac{1 \text{ atom C-12}}{12.00 \text{ amu}}$ = 6.02×10²³ atoms C-12

Determining Moles using Number

How many moles of the element magnesium is equal to 1.25×10^{23} atoms of magnesium? How many grams does this represent?

Determining Moles using Number


How many moles of the element magnesium is equal to 1.25×10^{23} atoms of magnesium? How many grams does this represent?

Multiply the number of atoms of Mg by the conversion factor.

 $1.25 \times 10^{23} \frac{\text{atoms Mg}}{6.02 \times 10^{23}} = 0.208 \text{ mol Mg}$

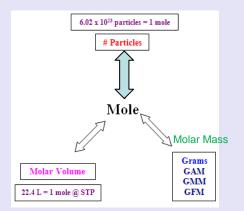
Multiply the number of moles of Mg by GAM.

0.208 mol Mg x 24.305 g/mol = 5.06 g

Converting Moles to Number of Atoms

Propane is a gas used for cooking and heating. How many atoms are in 2.12 moles of propane (C_3H_8)?

Converting Moles to Number of Atoms


Propane is a gas used for cooking and heating. How many atoms are in 2.12 moles of propane (C_3H_8)? There are 11 atoms/molecule of propane and 6.022 x 10²³ molecules in a mole:

Multiply the number of molecules of propane conversion factor.

2.12 mol $C_3 H_8 \ge 6.022 \ge 10^{23} \text{ molecules} = 12.77 \ge 10^{23} \text{ molecules}$ $1 \text{ mol } C_3 H_8$

Multiply the number of atoms / molecule conversion factor.

 $12.77 \times 10^{23} \text{ molecules } C_3 H_8 \times 11 \text{ atoms} = 140.4 \times 10^{23} \text{ atoms}$

$$= 1.40 \times 10^{25}$$
 atoms

Molar Mass

1 mol of iron atoms = 55.8 g

Molar mass (g/mol) is when there is 1 mol or 6.02×10^{23} atoms/units of a particular element or compound.

1 mol of sulfur atoms = 32.1 g

1 mol of carbon atoms = 12.0 g

Molar Quantities

GAM (Gram Atomic Mass)

The molar mass of an element, in grams per mole, has the same value as the average atomic mass of the element in amu's.

E.g. $_{34}$ Se⁷⁹ atomic mass =

Similarly, _____ is the molar mass of magnesium, meaning that 1 mol (or 6.02×10^{23} atoms of magnesium) has a mass of ? g.

What are the molar mass (GAM) of the following elements?

- 1 mole of potassium atoms (K) = ?
- 1 mole of aluminum atoms (AI) = ?
- 1 mole of oxygen molecules $(O_2) = ?$

Remember Professor HOFBrINCI? (diatomic elements)

Molar Mass

GAM (Gram Atomic Mass)

The molar mass of an element, in grams per mole, has the same value as the average atomic mass of the element in amu's.

E.g. $_{34}$ Se⁷⁹ atomic mass = 79.0 amu <u>GAM = 79.0 g/mol</u>

Similarly, **24.3 g/mol** is the molar mass of magnesium, meaning that 1 mol (*or* 6.02×10^{23} *atoms of magnesium*) has a mass of **24.3 g**.

What are the molar mass (GAM) of the following elements?

- 1 mole of potassium atoms (K) = 39.1 g/mol
- 1 mole of aluminum atoms (AI) = 27.0 g/mol
- 1 mole of oxygen molecules $(O_2) = 16.0 \times 2 = 32.0 \text{ g/mol}$ Remember Professor HOFBrINCI? (diatomic elements)

Molar Mass

The Mass of a Mole of a Compound Molar Mass

- To find the molar mass of a compound, add the atomic masses of the atoms that make up the molecule.
- A molecule of H_3PO_4 is composed of three Hydrogen atoms, one Phosphorus atom, and four of oxygen atoms (*round masses*).

H ₃ PO ₄					
Atom	# atoms in Formula		Atomic Mass		Total Mass of Element
Н					
Р		Х		_	
0					

The Mass of a Mole of a Compound Molar Mass

- To find the molar mass of a compound, add the atomic masses of the atoms that make up the molecule.
- A molecule of H_3PO_4 is composed of three Hydrogen atoms, one Phosphorus atom, and four of oxygen atoms (*round masses*).

H ₃ PO ₄					
Atom	# atoms in Formula		Atomic Mass		Total Mass of Element
Н	3		1		3
Р	1	x	31	_	31
0	4		16	_	64
					98 amu

1 mol of H_3PO_4 has a mass of 98 g.

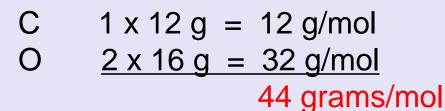
This is the mass of 6.02 x 10^{23} molecules of H₃PO₄.

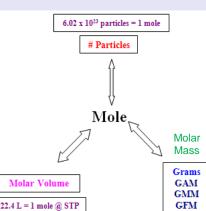
Molar Mass of a Compound

Determine the molar masses of table salt and carbon dioxide.

1 compound NaCI =

1 molecule $CO_2 =$

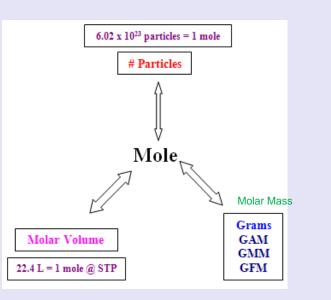

Molar Mass of a Compound


Determine the molar masses of table salt and carbon dioxide.

- 1 compound NaCl = $(1 \times 23 \text{ amu}) + (1 \times 35 \text{ amu}) = 58 \text{ amu}$
- 1 mol of NaCl = 6.02 x 10 ²³ NaCl cmpds = <u>58 grams</u> \rightarrow "GFM"
 - Na 1 x 23 g/mol Cl <u>1 x 35 g/mol</u> <u>58 g/mol</u>

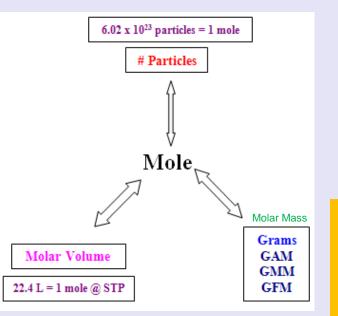
1 molecule $CO_2 = (1 \times 12 \text{ amu}) + (2 \times 16 \text{ amu}) = 44 \text{ amu}$

1 mole CO₂ = 6.02 x 10 ²³ CO₂ molecules = <u>44 grams</u> \rightarrow "GMM"



Molar Mass of a Compound

Determine the molar mass of 1 mol of glucose ($C_6H_{12}O_6$) molecules (blood sugar).

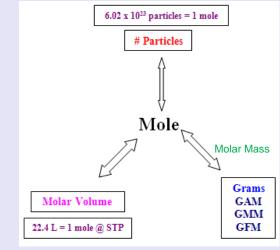

The molar mass of an element, in grams per mole, has the same value as the average atomic mass of the element in amu's.

Molar Mass of a Compound

Determine the molar mass of 1 mol of glucose ($C_6H_{12}O_6$) molecules (blood sugar).

)	6 x 12 g/mol	= 72 g/mol
1	12 x 1 g/mol	= 12 g/mol
)	<u>6 x 16 g/mol</u>	= <u>96 g/mol</u>
		180 g/mol C ₆ H ₁₂ O

The molar mass of an element, in grams per mole, has the same value as the average atomic mass of the element in amu's.


Converting Moles to Mass

What is the mass, in grams, of 9.45 mol of aluminum oxide, (AI_2O_3) ?

Converting Moles to Mass

What is the mass, in grams, of 9.45 mol of aluminum oxide, (AI_2O_3) ? First determine the mass of 1 mol of AI_2O_3 :

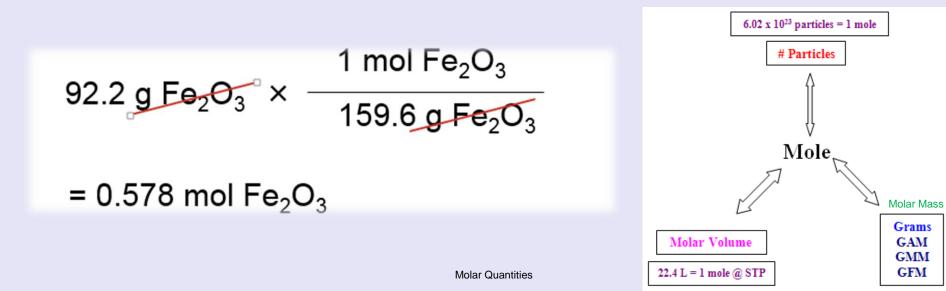
- AI $2 \times 27.0 \text{ g/mol} = 54.0 \text{ g/mol}$
- O $3 \times 16.0 \text{ g/mol} = 48.0 \text{ g/mol}$ 102.0 g/mol Al₂O₃

Multiply the given number of moles by the conversion factor.

9.45 mol
$$Al_2O_3 \times \frac{102.0 \text{ g } Al_2O_3}{1 \text{ mol } Al_2O_3}$$

 $= 964 \text{ g Al}_2\text{O}_3$

Converting Mass to Moles

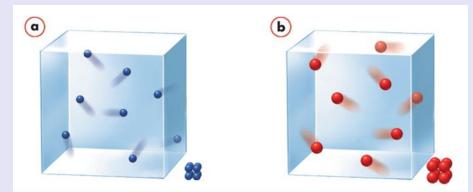

Rust is iron(III) oxide (Fe₂O₃). How many moles of iron(III) oxide are contained in 92.2 g of pure Fe₂O₃?

Converting Mass to Moles

Rust is iron(III) oxide (Fe₂O₃). How many moles of iron(III) oxide are contained in 92.2 g of pure Fe₂O₃?

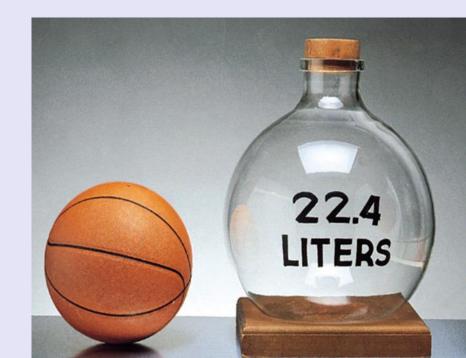
- Fe $2 \times 55.8 \text{ g/mol} = 111.6 \text{ g/mol}$
- O $3 \times 16.0 \text{ g/mol} = 48.0 \text{ g/mol}$ 159.6 g/mol Fe₂O₃

Multiply the given mass by the conversion factor.


Avogadro's hypothesis Molar Volume

Equal volumes of <u>gases</u> at the same temperature and pressure contain equal numbers of particles.

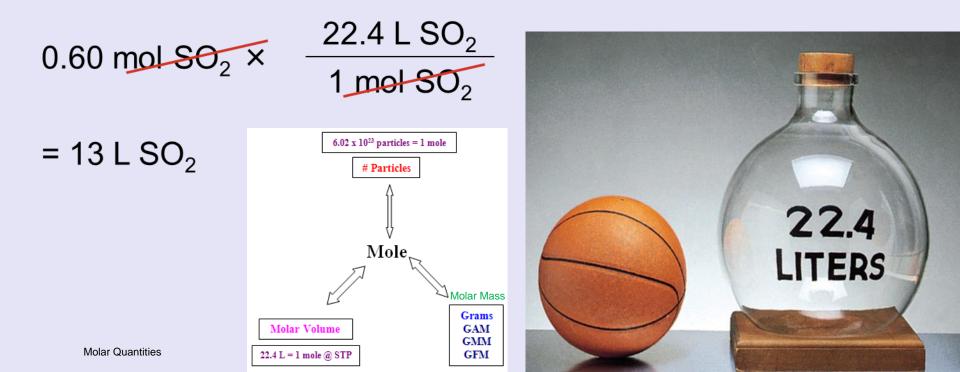
Standard temperature and pressure (STP) means a temperature of 0 °C (273 K) and a pressure of 101.3 kPa, or 1 atm.


At STP, 1 mol, or 6.02 x 10²³ particles, of any gas occupies a volume of 22.4 L.

The quantity, 22.4 L, is called the molar volume of a gas.

Molar Volume

Sulfur dioxide (SO₂) gas is an air pollutant produced by burning coal. Determine the volume, in liters, of 0.60 mol SO₂ gas at STP.



Molar Volume

Sulfur dioxide (SO₂) gas is an air pollutant produced by burning coal. Determine the volume, in liters, of 0.60 mol SO₂ gas at STP.

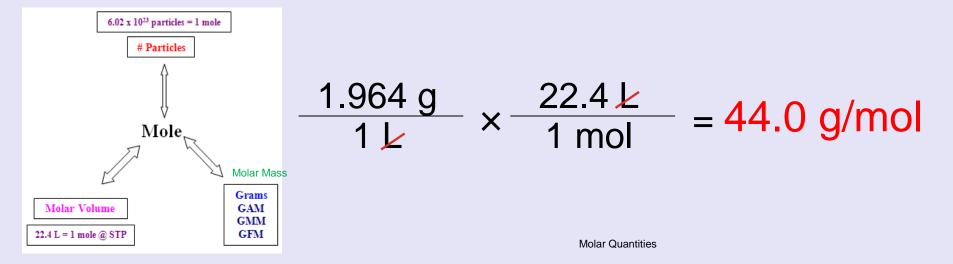
Multiply the given number of moles by the conversion factor.

Using factor labelling, one can interconvert density & molecular mass. Usually the density of a gas is measured in grams per liter (g/L) and at a specific temperature.

The density of a gaseous compound containing carbon and oxygen is found to be 1.964 g/L at STP. What is the molar mass of the compound?

Using factor labelling, one can interconvert density & molecular mass. Usually the density of a gas is measured in grams per liter (g/L) and at a specific temperature.

The density of a gaseous compound containing carbon and oxygen is found to be 1.964 g/L at STP. What is the molar mass of the compound?


Set it up to find molar mass \rightarrow g/mol

1.964 g/L = ? g/mol

Using factor labelling, one can interconvert density & molecular mass. Usually the density of a gas is measured in grams per liter (g/L) and at a specific temperature.

The density of a gaseous compound containing carbon and oxygen is found to be 1.964 g/L at STP. What is the molar mass of the compound?

Since density is g/L, we know that liters and moles are related. Factor label the given density by the molar volume conversion factor.

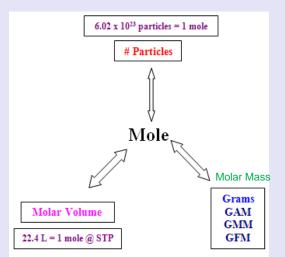
200 ml of a gas (@STP) has a mass of 0.396 g. What is the molecular mass of this gas?

200 ml of a gas (@STP) has a mass of 0.396 g. What is the molecular mass of this gas?

Set it up to find molar mass \rightarrow g/mol

Put mass over volume (density): 0.396 g / 200 mL = ? g/mol

0.396 g / 200 mL x 1000 ml / 1 L x 22.4 L/mol = 44.4 g/mol


200 ml of a gas (@STP) has a mass of 0.396 g. What is the molecular mass of this gas?

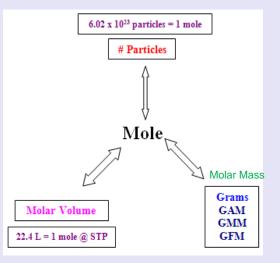
Since mass and volume are given, determine the density of the gas [hint: set up units to solve for molar mass \rightarrow g/mol]

D = M/V D = 0.396 g / 200 ml x 1000 ml / 1 L = 1.98 g/L

Factor label the density into molecular mass

1.98 g/L x 22.4 L / mol @ STP = 44.4 g/mol

Determine the density of SO_2 gas @ STP.

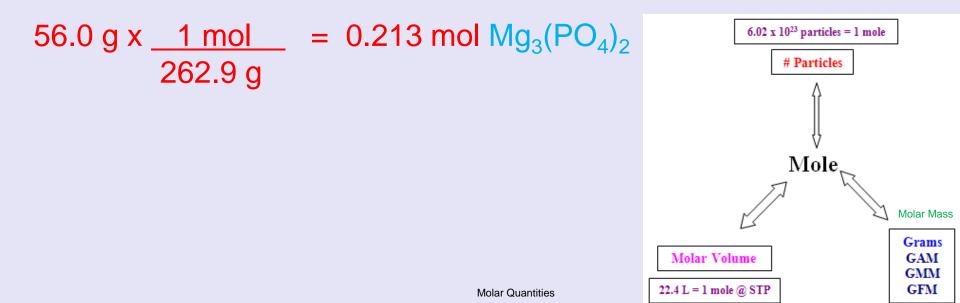

Determine the density of SO_2 gas @ STP.

Since the molecular formula is given, determine the molecular mass of the gas

S	1 x 32.1 g/mol	= 32.1 g/mol
0	<u>2 x 16.0 g/mol</u>	= <u>32.0 g/mol</u>
		64.1 g/mol SO ₂ gas

Convert molecular mass into density @ STP (factor label the UNITS) 64.1 g/mole x 1 mol / 22.4 L @ STP = 2.9 g / L

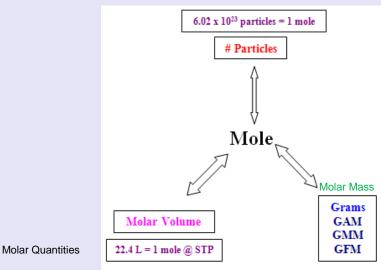
Confirm your answer by checking Reference Table C


Determine the number of moles in 56.0 g of magnesium phosphate $(Mg_3(PO_4)_2)$:

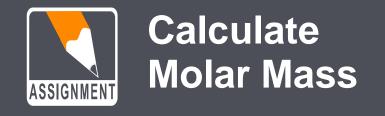
Determine the number of moles in 56.0 g of magnesium phosphate $(Mg_3(PO_4)_2)$:

Mg $3 \times 24.3 \text{ g/mol} = 72.9 \text{ g/mol}$ P $2 \times 31.0 \text{ g/mol} = 62.0 \text{ g/mol}$ O $\frac{8 \times 16.0 \text{ g/mol}}{262.9 \text{ g/mol} \text{ Mg}_3(\text{PO}_4)_2}$

The molar mass of water (H₂O) is 18.00 g/mol. What is the mass of 8.21 \times 10²⁵ molecules of water?


The molar mass of water (H₂O) is 18.00 g/mol. What is the mass of 8.21 \times 10²⁵ molecules of water?

Go to the STANDARD first (moles)


8.21 x 10²⁵ molecules $H_2O \times 1$ mol Mg = 1.36 x 10² mol H_2O 6.02 x 10²³ molecules H_2O

Convert moles to grams

 $1.36 \times 10^2 \text{ mol H}_2\text{O} \times 18.00 \text{ g/mol} = 2.45 \times 10^3 \text{ g} \text{ H}_2\text{O}$

Give the molar mass of each element.

Use the Periodic Table

Potassium (K):

Calculate the molar mass of each compound. Ammonia (NH₃):

Lead(II) chloride (PbCl₂):

Acetic acid (CH₃COOH):

Osmium (Os):

Manganese (Mn):

Magnesium hydroxide (Mg(OH)₂):

The isotope lead-208 (²⁰⁸Pb):

The isotope strontium-87 (⁸⁷Sr):

Iron(III) oxide (Fe_2O_3) :

Calculate Molar Mass

Give the molar mass of each of the following elements.

Use the Periodic Table

Potassium (K):

39.1 g/mol

Osmium (Os):

190. g/mol

Manganese (Mn):

54.9 g/mol

The isotope lead-208 (208Pb):

208 g/mol

The isotope strontium-87 (87Sr):

87.6 g/mol

Calculate the molar mass of each compound.

```
Ammonia (NH<sub>3</sub>):
```

- N 1 x 14.0 g/mol = 14.0 g/mol
- H $3 \times 1.00 \text{ g/mol} = 3.00 \text{ g/mol} = 17.0 \text{ g/mol}$

```
Lead(II) chloride (PbCl<sub>2</sub>):

Pb 1 x 207.2 g/mol= 207.2 g/mol

Cl 2 x 35.5 g/mol = <u>71.0 g/mol</u>

= 278 g/mol
```

```
Acetic acid (CH<sub>3</sub>COOH):

C 2 x 12.0 g/mol = 24.0 g/mol

H 4 x 1.0 g/mol = 4.0 g/mol

O 2 x 16.0 g/mol = 32.0 g/mol

= 60.0 g/mol

Magnesium hydroxide (Mg(OH)<sub>2</sub>):

Mg 1 x 24.3 g/mol = 24.3 g/mol

H 2 x 1.00 g/mol = 2.00 g/mol
```

```
O 2 \times 16.0 \text{ g/mol} = \frac{32.0 \text{ g/mol}}{= 58.3 \text{ g/mol}}
```

```
Iron(III) oxide (Fe<sub>2</sub>O<sub>3</sub>):
Fe 2 x 55.8 g/mol = 111.6 g/mol
```

= 160. g/mol

How many atoms of phosphorus (P) are in a sample that has a mass of 172.90 g?

Determine the mass of the sample described below.

 8.32×10^{20} formula units CaBr₂

A gas cylinder contains 9.03×10^{24} molecules of oxygen gas (O₂). How many liters of oxygen are in the cylinder?

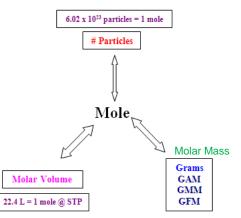
Convert between Mass, Particles, & Volume

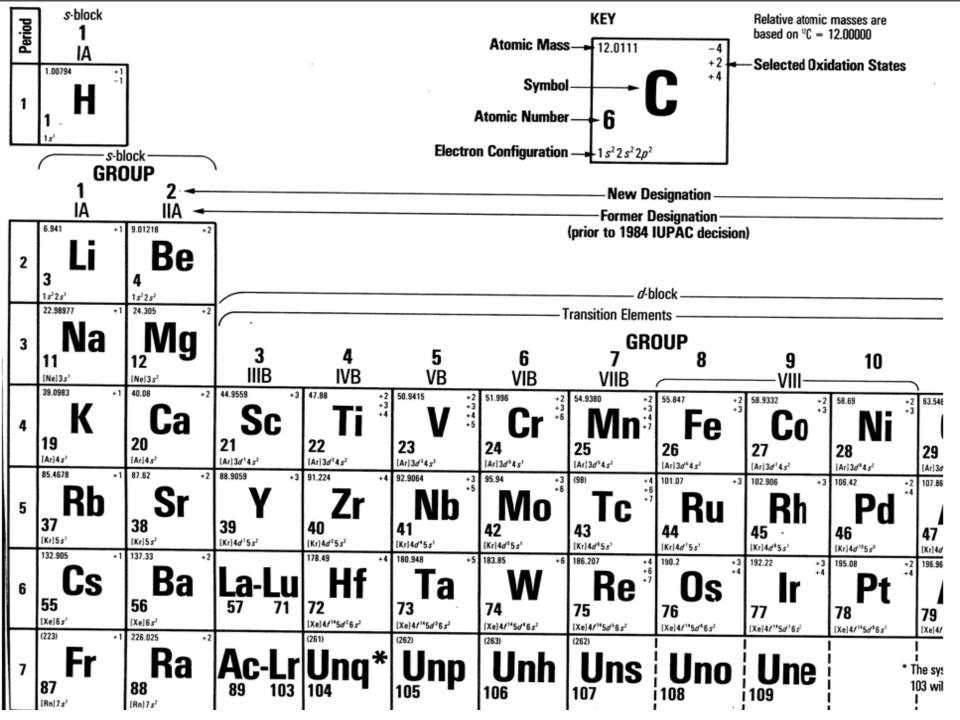
- How many atoms of phosphorus (P) are in a sample that has a mass of 172.9 g?
- 172.9 g x 1 mol/30.97 g P = 5.583 mol
- 5.583 mol x 6.022 × 10²³ atoms/mol =

= 3.362 × 10²⁴ atoms

A gas cylinder contains 9.03×10^{24} molecules of oxygen gas (O₂). How many liters of oxygen are in the cylinder?

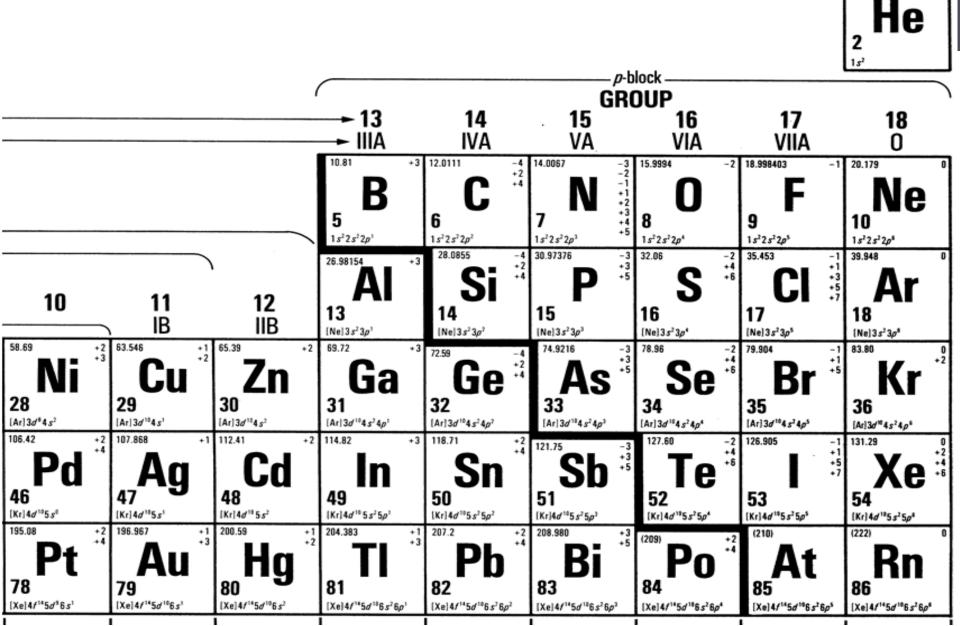
 9.03×10^{24} molecules x 1 mol/6.02 x 10^{23} molecules = 15.0 moles


15.0 mol x 22.4 L/mol = $336 L O_2$


Determine the mass of the sample described below.

- 8.32×10^{20} formula units CaBr₂
- 8.32×10^{20} f units X 1 mol/6.02 × 10²³ f. units = 1.38 × 10⁻³ moles
- Ca 1 x 40.1 g/mol= 40.1 g/mol
- Br 2 x 79.9 g/mol= <u>159.8 g/mol</u>

= 199.9 g/mol CaBr₂


1.38 x 10⁻³ mol x 199.9 g/mol = 0.276 g CaBr₂

ation States

s-block

18 0

4.00260

	IONIZATION ENERGIES AND ELECTRONEGATIVITIES														
1									18						
н	313 First Ionization Energy (kcal/mol of atoms) Electronegativity*								He	567					
1000000		1 2	2	1	13 14		4	15		16		1	17		
	125		215		191		260		336		314		402		497
Li	1.0	Be	1.5	В	2.0	с	2.6	N	3.1	0	3.5	F	4.0	Ne	
	119		176		138		188		242		239		300		363
Na	0.9	Mg	1.2	Al	1.5	Si	1.9	P	2.2	s	2.6	CI	3.2	Ar	
	100		141		138		182		226		225		273		323
к	0.8	Ca	1.0	Ga	1.6	Ge	1.9	As	2.0	Se	2.5	Br	2.9	Kr	
	96		131		133		169		199		208		241		280
Rb	0.8	Sr	1.0	In	1.7	Sn	1.8	Sb	2.1	Te	2.3	I	2.7	Xe	
	90	4	120		141		171		168		194				248
Cs	0.7	Ba	0.9	TI	1.8	Pb	1.8	Bi	1.9	Ро	2.0	At	2.2	Rn	
Fr	0.7	Ra	122 0.9		bitrar	y sca	ale ba	sed o	on fluo	orine	; = 4	.0			

I

....

Polyatomic Ions

Name	Formula	Name	Formula	
perPhosphate	$(PO_5)^{-3}$	perCarbonate	$(CO_4)^{-2}$	
Phosphate	$(PO_4)^{-3}$	Carbonate	$(CO_3)^{-2}$	
Phosphite	$(PO_3)^{-3}$	Carbonite	$(CO_2)^{-2}$	
hypoPhosphite	(PO ₂) ⁻³	hypocarbonite	(CO) ⁻²	
perChlorate	$(ClO_4)^{-1}$	perNitrate	(NO ₄)	
Chlorate	(ClO ₃) ⁻¹	Nitrate	(NO ₃) ⁻	
Chlorite	(ClO ₂) ⁻¹	Nitrite	(NO ₂) ⁻	
hypoChlorite	(ClO) ⁻¹	Hyponitrite	(NO) ⁻	Ammonium
perSulfate	$(SO_5)^{-2}$	perChromate	$(CrO_5)^{-2}$	$(\mathrm{NH}_4)^{+1}$
Sulfate	$(SO_4)^{-2}$	Chromate	(CrO ₄) ⁻²	
Sulfite	$(SO_3)^{-2}$	Chromite	$(CrO_3)^{-2}$	
hyposulfite	(SO ₂ -2	Hypochromite	$(CrO_2)^{-2}$	
Acetate	$(C_2H_3O_2)^{-1}$	Cyanide	(CN) ⁻¹	
Hydroxide	(OH) ⁻¹	Manganate	$(MnO_4)^{-2}$	