

Chemical Bonding

Practice Questions

Use electron dot diagrams to determine the formula of the ionic compound formed when magnesium reacts with nitrogen. Show the overall charge on the formula unit.

Use electron dot diagrams to determine the formula of the ionic compound formed when magnesium reacts with nitrogen. Show the overall charge on the .formula unit.

Use *electron dot diagrams* to determine the formula of the ionic compound formed when aluminum reacts with Bromine. Show the overall charge on the formula unit.

Use *electron dot diagrams* to determine the formula of the ionic compound formed when aluminum reacts with Bromine. Show the overall charge on the formula unit.

Write the Chemical Formulas from the Name

sodium phosphate

ammonium carbonate

sodium phosphate Sodium: Na⁺ Phosphate: PO_4^{3-} (3)(+1) + (-3) = 0 $Na_3^+(PO_4)^{3-}$

ammonium carbonate Ammonium: NH_4^+ Carbonate: CO_3^{2-} (2)(+1) + (-2) = 0 $(NH_4)_2^+(CO_3)^{-2}$ $NH_4^+(CO_3)^{2-}$

Bonding Elements	Name of Compound	
Sodium + Sulfur		QUICK CHECK
Calcium + Fluorine		
Oxygen + Silver		
Chlorine + Magnesium		
Lithium + Nitrogen		
Strontium + Sulfur		
Barium + Bromine		
Oxygen + Potassium		
Copper (+2) + Sulfur		
Copper (+1) + Sulfur		
Iron (+2) + Oxygen		
Iron (+3) + Oxygen		

Bonding Elements	Name of Compound	
Sodium + Sulfur	Sodium sulfide	QUICK CHECK
Calcium + Fluorine	Calcium fluoride	
Oxygen + Silver	Silver oxide (Ag only has 1 oxid. #)	
Chlorine + Magnesium	Magnesium chloride	
Lithium + Nitrogen	Lithium nitride	
Strontium + Sulfur	Strontium sulfide	
Barium + Bromine	Barium bromide	
Oxygen + Potassium	Potassium oxide	
Copper (+2) + Sulfur	Copper(II) sulfide, cupric sulfide	
Copper (+1) + Sulfur	Copper(I) sulfide, cuprous sulfide	
Iron (+2) + Oxygen	Iron(II) oxide, Ferrous Oxide	
Iron (+3) + Oxygen	Iron(III) oxide, Ferric Oxide	

Which of these formulas describes a binary ionic compound?

- a. O₂
- b. MgCl₂
- c. NO_2
- d. Fe(OH)₃

What is the correct name for CCl₄?

- a. carbon(IV) chloride
- b. carbon tetrachlorine
- c. carbon tetrachloride
- d. monocarbon tetrachloride

Write the formula for the compound calcium oxide.

Which of these formulas describes a binary ionic compound?

- a. O₂ (diatomic, covalent)
- b. MgCl₂ (binary means "two" elements only)
- c. NO₂ (covalent)
- d. Fe(OH)₃ (ionic, but not binary)

What is the correct name for CCl₄?

- a. carbon(IV) chloride
- b. carbon tetrachlorine
- c. carbon tetrachloride (1 carbon, 4 chlorines)
- d. monocarbon tetrachloride

Write the formula for the compound calcium oxide.

It takes one calcium ion with a charge of 2+ to balance one oxide ion with a charge of 2–. The formula is CaO.

What force holds the atoms of a metal together?

- a. the attraction of a positively charged atom to a negatively charged atom
- b. the attraction between metal cations and a pool of shared electrons
- c. the sharing of electrons between two atoms
- d. the gravitational force between dense metal atoms

Why are solid metals good conductors of electric current?

- a. Metals are good conductors because they can be drawn into wires.
- b. Metals are good conductors because they are solids at room temperature.
- c. The nuclei of metal atoms can move easily because they repel one another.
- d. Shared electrons are able to flow freely through the metal.

The properties of steel depend on the ratio of iron, carbon, and small amounts of other elements in the _____.

What force holds the atoms of a metal together?

- a. the attraction of a positively charged atom to a negatively charged atom
- b. the attraction between metal cations and a pool of shared electrons
- c. the sharing of electrons between two atoms
- d. the gravitational force between dense metal atoms

Why are solid metals good conductors of electric current?

- a. Metals are good conductors because they can be drawn into wires.
- b. Metals are good conductors because they are solids at room temperature.
- c. The nuclei of metal atoms can move easily because they repel one another.
- d. Shared electrons are able to flow freely through the metal.

The properties of steel depend on the ratio of iron, carbon, and small amounts of other elements in the **alloy**.

Sodium oxide

Copper(I) nitrate

Barium phosphide

Manganese(IV) sulfate

Potassium chloride

Ammonium phosphate

Lithium sulfide

Cobalt(II) chloride

Sodium oxide

 $Na_2^+O^{-2} \rightarrow Na_2O$

Barium phosphide

 $Ba_3^{+2}P_2^{-3} \rightarrow Ba_3P_2$

Potassium chloride

 $K^+CI^- \rightarrow KCI$

Lithium sulfide

 $\text{Li}_2^+\text{S}^{-2} \rightarrow \text{Li}_2\text{S}$

Copper(I) nitrate $Cu^{+}(NO_3)^{-} \rightarrow Cu(NO_3)$ Manganese(IV) sulfate $Mn_2^{+4}(SO_4)_4^{-2} \rightarrow Mn(SO_4)_2$ Ammonium phosphate $(NH_4)_3^+(PO_4)^{-3} \rightarrow (NH_4)_3(PO_4)$ Cobalt(II) chloride $Co^{+2}Cl_2^{-2} \rightarrow CoCl_2$

Ionic compounds do not need special naming, but transition elements do.

Name the Following Ionic Compounds

MgCl ₂	Μ	g	С	2
-------------------	---	---	---	---

 $Fe_2(SO_4)_3$

 B_2O_3

CsF

BaS

 Na_3N

 $Mn(NO_3)_2$

 Cu_2CO_3

 NH_4I

Na₃PO₄

Name the Following lonic Compounds

 $MgCl_2$

magnesium chloride

 B_2O_3

boron oxide

CsF

cesium fluoride

BaS

barium sulfide

 Na_3N

sodium nitride

 $Fe_{2}^{+3}(SO_{4})_{3}$ iron(III) sulfate, Ferric sulfate $Mn^{+2}(NO_3)_2$ manganese(II) nitrate $Cu_{2}^{+1}CO_{3}$ copper(I) carbonate, cuprous carbonate NH₄I ammonium iodide Na₃PO₄ sodium phosphate

Ionic compounds do not need special naming, but transition elements do.

Polyatomic Ions

Name	Formula	Name	Formula	
perPhosphate	(PO ₅) ⁻³	perCarbonate	$(CO_4)^{-2}$	
Phosphate	$(PO_4)^{-3}$	Carbonate	$(CO_3)^{-2}$	
Phosphite	$(PO_3)^{-3}$	Carbonite	$(CO_2)^{-2}$	
hypoPhosphite	$(PO_2)^{-3}$	hypocarbonite	(CO) ⁻²	
perChlorate	$(ClO_4)^{-1}$	perNitrate	$(NO_4)^-$	
Chlorate	$(ClO_3)^{-1}$	Nitrate	(NO_3)	
Chlorite	$(ClO_2)^{-1}$	Nitrite	$(NO_2)^-$	
hypoChlorite	(ClO) ⁻¹	Hyponitrite	(NO) ⁻	Ammonium
perSulfate	$(SO_5)^{-2}$	perChromate	$(CrO_5)^{-2}$	$(\mathrm{NH}_4)^{+1}$
Sulfate	$(SO_4)^{-2}$	Chromate	$(CrO_4)^{-2}$	
Sulfite	(SO ₃) ⁻²	Chromite	$(CrO_3)^{-2}$	
hyposulfite	(SO_2^{-2})	Hypochromite	$(CrO_2)^{-2}$	
Acetate	$(C_2H_3O_2)^{-1}$	Cyanide	(CN) ⁻¹	
Hydroxide	(OH) ⁻¹	Manganate	$(MnO_4)^{-2}$	

Determine the formula: use the criss-cross method with polyatomic ions, treating the polyatomic ion as ONE unit:

Calcium nitrate

Lithium Carbonate

Magnesium Hydroxide

TRY IT

Compounds With Polyatomic Ions

Determine the formula: use the criss-cross method with polyatomic ions, treating the polyatomic ion as ONE unit:

 Ca_{0}^{+} (NO₃)₀⁻ Ca(NO₃)₂ 1(2+) + 2(1-)= 0

Lithium Carbonate

Calcium nitrate

Magnesium Hydroxide

Li₂CO₃) + 1(2-) = 0

Oxidation State of Elements in Polyatomic Ions

Determine the oxidation state of the elements in a polyatomic ion:

- Nitrate $(NO_3)^{-1}$...
- Carbonate $(CO_3)^{-2}$...
- Chlorite $(CIO_2)^{-1}$...
- Perphosphate (PO₅)⁻³...

TRY IT

The sum of the oxidation states of elements in a polyatomic ion equals the charge given:

Oxygen's oxidation is -2 in each case. Nitrate $(NO_3)^{-1} \dots N + 3(-2) = -1 \dots$ therefore, N+5

Carbonate $(CO_3)^{-2} \dots C + 3(-2) = -2 \dots$ therefore, C+4

Chlorite $(CIO_2)^{-1} \dots C + 2(-2) = -1 \dots$ therefore, CI+3

Perphosphate $(PO_5)^{-3} \dots P + 5(-2) = -3 \dots P^{+7}$

Name the Covalent Compounds or Give the Formula

 NI_3

SulfurVI Fluoride

 CS_2

 N_4O

Dinitrogen tetroxide

Diphosphorous pentoxide

CarbonII Oxide

 H_2O

Name the Covalent Compounds or Give the Formula

TRY IT

NI₃ Nitrogen tri-iodide

SulfurVI Fluoride

 $S^{+6}F_{6}^{-1}$

Dinitrogen tetroxide

 N_2O_4

CarbonII Oxide CO (carbon monoxide) N_4O

Tetranitrogen monoxide

CS₂ Carbon disulfide

Diphosphorous pentoxide P_2O_5

H₂O Dihydrogen monoxide

Elements	Formula	Name of Compound	
Sodium, Sulfur			
Calcium, Fluorine			IKTH
Silver, Oxygen			
Magnesium, Chlorine			
Lithium, Nitrogen			
Strontium, Sulfur			
Barium, Bromine			
Potassium, Oxygen			
Copper (+2), Sulfur			
Copper (+1), Sulfur			
Iron (+2), Oxygen			
Iron (+3) Oxygen			
Aluminum, Chlorine			
Aluminum, Sulfur			
Ammonium, Sulfur			
Copper (+2), Nitrate			
Calcium, Phosphate			
Potassium, Chlorine			
Hydrogen, Oxygen			
Lead (+2), Oxygen			
Sodium, Hydroxide			
Ammonium, Sulfate			
Zinc, Acetate			
Barium, Chlorate			1

Elements	Formula	Name of Compound	
Sodium, Sulfur	Na ₂ ⁺¹ S ⁻²	Sodium sulfide	
Calcium, Fluorine	Ca ⁺² F ₂ ⁻¹	Calcium fluoride	IKTH
Silver, Oxygen	Ag ₂ ⁺¹ O ⁻²	Silver oxide	
Magnesium, Chlorine	Mg ⁺² Cl ₂ ⁻¹	Magnesium chloride	
Lithium, Nitrogen	Li ₃ +1N-3	Lithium nitride	
Strontium, Sulfur	Sr+2S-2	Strontium sulfide	
Barium, Bromine	Ba ⁺² Br ₂ ⁻¹	Barium bromide	
Potassium, Oxygen	K ₂ ⁺¹ O ⁻²	Potassium oxide	
Copper (+2), Sulfur	Cu+2S-2	Copper(II) sulfide, cupric sulfide	
Copper (+1), Sulfur	Cu ₂ +1S-2	Copper(I) sulfide, cuprous sulfide	
Iron (+2), Oxygen	Fe ⁺² O ⁻²	Iron(II) oxide, Ferrous Oxide	
Iron (+3) Oxygen	Fe ₂ +3O ₃ -2	Iron(III) oxide, Ferric Oxide	
Aluminum, Chlorine	Al ⁺³ Cl ₃ ⁻¹	Aluminum chloride	
Aluminum, Sulfur	Al ₂ +3S ₃ -2	Aluminum sulfide	
Ammonium, Sulfur	(NH ₄) ₂ ⁺¹ S ⁻²	Ammonium sulfide	
Copper (+2), Nitrate	Cu ⁺² (NO ₃) ₂ ⁻¹	Copper(II) nitrate, cupric nitrate	
Calcium, Phosphate	Ca ₃ ⁺² (PO ₄) ₂ ⁻³	Calcium phosphate	
Potassium, Chlorine	K ⁺¹ Cl ⁻¹	Potassium chloride	
Hydrogen, Oxygen	H ₂ ⁺¹ O ⁻²	diHydrogen monoxide, water	
Lead (+2), Oxygen	Pb+2O-2	Plumbous oxide	
Sodium, Hydroxide	Na ⁺¹ (OH) ⁻¹	Sodium hydroxide	
Ammonium, Sulfate	(NH ₄) ₂ ⁺¹ (SO ₄) ⁻²	Ammonium sulfate	
Zinc, Acetate	$Zn^{+1}(C_2H_3O_2)_2^{-1}$	Zinc acetate	
Barium, Chlorate	Ba ⁺² (CIO ₃) ₂ ⁻¹	Barium chlorate	

General guidelines for writing the name and formula of a chemical compound:

- 1. Follow the rules for naming acids when H is the first element in the formula and it is aqueous (dissolved in water).
- 2. If the compound is binary, generally the non-metal name ends with the suffix *-ide*.
- 3. If the compound is a molecular (covalently bonded) binary compound, use prefixes to indicate the number of atoms.
- 4. When a polyatomic ion that includes oxygen is in the formula, the compound name generally ends in *-ite* or *-ate*.
- 5. If the compound contains a metallic cation that can have different ionic charges (transition, group B metals), use a Roman numeral to indicate the numerical value of the ionic charge in the compound.

ation States

s-block

18 0

4.00260