Go to the "Slide Show" shade above

Click on "Play from Beginning"

Intro to Biology

Chapter 8: Cellular Respiration

Glycolysis

Ellicitation: What do You Think?

- Give a definition or explanation of the following:
- How do organisms obtain energy for life?
- Respiration
- Aerobics
- Why are we exhausted and sore after rigorous exercise?
- Distinguish photosynthesis from cellular respiration.

ATP: Energy for Living Organisms

(ATP) is an energy source for all living organisms.
ATP is composed of one adenosine molecule and ______ phosphates.
Adenosine _____ (ADP)

is a compound composed of one adenosine and _____ phosphate groups.

_____ is converted to _____ producing energy when a phosphate is removed.

Name of molecule?

ATP: Energy for Living Organisms

- Adenosine triphosphate (ATP) is an energy source for all living organisms.
- ATP is composed of one adenosine molecule and three phosphates.
- Adenosine diphosphate (ADP) is a compound composed of one adenosine and two phosphate groups.
- ATP is converted to ADP and produces energy when a phosphate is removed.

By the end of this lesson, you should be able to:

- Understand how energy is acquired by organisms.
- Investigate the biological processes of Cell Respiration.
- Analyze the steps of Cellular Respiration: Glycolysis, Transition Reaction, the Kreb's Cycle, and the Electron Transport Chain.
- Distinguish aerobic from anaerobic respiration.
- Science Practice: Fermentation in Yeast

Photosynthesis and Cellular Respiration provide Energy for Life

♦ LIFE requires ENERGY.

• In almost all ecosystems, energy ultimately comes from the **SUN**.

• In **Photosynthesis**,

- some of the energy in sunlight is captured by chloroplasts.
- atoms of carbon dioxide and water are rearranged.
- sugar and oxygen are produced.

Photosynthesis and Cellular Respiration provide Energy for Life

♦ LIFE requires ENERGY.

• In almost all ecosystems, energy ultimately comes from the **SUN**.

• In **Photosynthesis**,

- some of the energy in sunlight is captured by chloroplasts.
- atoms of carbon dioxide and water are rearranged.
- sugar and oxygen are produced.

Photosynthesis and Cellular Respiration provide Energy for Life

- Cellular Respiration takes place in the mitochondria of eukaryotic cells.
- In Cellular Respiration,

9

- **sugar** is broken down to **carbon dioxide** and **water**;
- the cell captures some of the released energy to make **ATP**.
- In these energy conversions, some energy is lost as heat.

Cell Respiration

Photosynthesis and Cellular Respiration

Photosynthesis is carried out by plants, algae, and some bacteria.

Cellular respiration is carried out by **ALL** living organisms.

Plants undergo photosynthesis and cellular respiration. Animals (e.g. tiger, insects) are only capable of cellular respiration.

Cellular Respiration

Cellular Respiration is an **exergonic** (energyreleasing) process that **transfers energy** from the bonds in **Glucose** to form **ATP**.

Energy for Living Organisms

Cellular respiration is a process that breaks down glucose to provide energy in the form of ATP for metabolic processes.

What is the Site of Cellular Respiration?

? Cell ? Cell ?

What is the Site of Cellular Respiration?

Aerobic Cellular Respiration: Oxygen Present

How do cells extract energy from glucose?

Cells capture Energy from Electrons "falling" from Organic Fuels to Oxygen $C_6H_{12}O_6 + 6O_2$

- Cells extract energy from glucose by the transfer of <u>electrons</u> during chemical reactions.
- During Cellular Respiration,

17

- **Electrons** are transferred from **glucose** to **oxygen**
- **Energy** is released (exergonic reaction).
- **Oxygen** strongly attracts **electrons**.
- An electron loses potential energy when it is transferred to oxygen.
 Cell Respiration

Cells capture Energy from Electrons "falling" from Organic Fuels to Oxygen

- Cellular Respiration is a controlled descent of <u>electrons</u> ... like rolling down an energy hill.
- Energy is <u>released in small amounts</u> and can be stored in the <u>chemical bonds</u> of <u>ATP</u>.
- The movement of electrons from one molecule to another is an <u>Oxidation-</u> <u>Reduction</u> reaction, or <u>Redox</u> reaction.

Cells capture Energy from Electrons "falling" from Organic Fuels to Oxygen

- A lot of energy is stored **in the bonds** between the carbon and hydrogen atoms in glucose.
- During cellular respiration, redox reactions basically transfer this bond energy in the form of electrons from glucose to molecules called electron carriers.

So an electron carrier is basically a molecule that transports electrons during cellular respiration.

• In a **Redox reaction**,

- The loss of electrons from one substance is called **Oxidation**.
- The addition of electrons to another substance is called Reduction.
- A molecule is **oxidized** when it **loses** one or more electrons.
- A molecule is **reduced** when it **gains** one or more electrons.

Cells capture Energy from Electrons "falling" from Organic Fuels to Oxygen

- The **Cellular Respiration** equation is helpful to show the changes in **Hydrogen** atoms (with their **electrons**).
 - Glucose loses its hydrogen atoms & some electrons, becoming oxidized to CO₂.

Oxygen gains electrons (and hydrogens)

 Glucose is oxidized
 NAD+
 accepts electrons
 & is reduced to NADH.

NAD+ -> NADPH

24

& is reduced to

NADH.

NADH delivers electrons to a string of electron carrier molecules, which moves electrons down an energy hill.

 These carrier molecules constitute an Electron Transport Chain

- **NADH** delivers **electrons** to a string of **electron carrier molecules**, which moves electrons **down an energy hill**.
- These carrier molecules constitute an **Electron Transport Chain**.

- At the bottom of the hill is Oxygen, which
 - accepts two electrons
 - ♦ picks up two H⁺
 - becomes reduced to
 Water.

Use the following terms to label the diagram: CO_2 , cellular respiration, chemical energy, chloroplast, glucose, light energy, mitochondria, photosynthesis

Use the following terms to label the diagram: CO_2 , cellular respiration, chemical energy, chloroplast, glucose, light energy, mitochondria, photosynthesis

Cell Respiration

- Complex metabolic process by which the chemical bonds in Glucose are broken down into Carbon Dioxide.
- The **Energy** released is harnessed to make **ATP**.

Cell Respiration

Cell Respiration

ATP provides cells with the necessary fuel to carry out basic functions.

- Occurs in <u>ALL CELLS</u>:
 - Animal Cells: Glucose is obtained from food.
 - Plant Cells: Glucose is obtained through

Photosynthesis.

Cell Respiration

- Glucose breakdown is a <u>REDOX</u> reaction.
- **Glucose** is oxidized (loses e-) and O₂ is reduced (gains e-).
- Breakdown of one Glucose results in <u>36 ATP</u>.

Cellular Respiration

- Since Cellular Respiration breaks down bonds of Glucose to form Energy...
 - Is this reaction **Anabolic** or **Catabolic**?
- Since the bonds are broken and water is added...
 - Is this a Dehydration Synthesis reaction or a Hydrolysis reaction?
- Since **Energy** is **released** in this reaction...
 - Is this reaction **Endergonic** or **Exergonic**?

Cellular Respiration

- Since Cellular Respiration breaks down bonds of Glucose to form Energy...
 - This reaction is **Catabolic**
- Since the bonds are broken and water is added...
 - This reaction is Hydrolysis
- Since Energy is released in this reaction...
 This reaction is Exergonic

What are the Steps of Cellular Respiration?

Three Major Stages:

1. Glycolysis (splitting of sugar): Cytoplasm

Transition Reaction

Migration from Cytoplasm to Mitochondrial Matrix.

2. Krebs Cycle (Citric Acid Cycle)

Mitochondrial Matrix

3. Electron Transport Chain (ETC) Inner Mitochondrial Membrane (Cristae)

What are the Steps of Cellular Respiration?

37

Stage 1: Glycolysis Overview

- Glycolysis is the first stage of the metabolic pathway of cellular respiration that results in the production of ATP.
 - TWO ATP are used to start the process.
 - Glucose is "SPLIT" & converted into two 3-carbon pyruvic acid molecules.
 - Two NAD+ are converted to two NADH.
 - Four ATP are produced with a <u>net</u> <u>gain of two ATP</u>.

1. Glycolysis ("sugar splitting")

 Breaks down glucose into two molecules of a three-carbon compound called pyruvate.

1. Glycolysis

Electrons carried via NADH Guzcourss Guzcose Pyruwse Crrceoc (substrate-ievel phosphorylation)

- ✓ Takes place in the cytoplasm of the cell.
 - In both eukaryotic and prokaryotic cells.

✓ Occurs anaerobically (It does not require or use oxygen).

2. and an unstable sugar

phosphate molecule.

- 6 High energy electrons & hydrogen ions are passed to two NAD⁺ molecules (electron acceptors).
- 6 When each NAD⁺ accepts the electrons and hydrogen ion, it is reduced from NAD⁺ to NADH.
 - ✓ NAD+ is an electron acceptor. It carries electrons & hydrogen to the Electron Transport Chain (ETC).

Direct Phosphorylation:

ADP molecules join with the **phosphates** on each end of the split glucose molecule forming **ATP** molecules.

Direct Phosphorylation

⁸ When the phosphorus is taken off each end of the molecule, **PYRUVATE** is formed.

- 2. Where does it occur?
- 3. What is used?
- 4. What energy molecule is produced?
- 5. What are the chemical by-products of the reaction?

Step 1: Glycolysis

- 1. What is it?
 - Breaking down of glucose
- 2. Where does it occur?
 - Cell cytoplasm
- 3. What is used?

Glucose

- 4. What energy molecule is produced?
 Met 2 ATP (2 used, 4 produced)
- 5. What are the chemical by-products of the reaction?
 - 2 pyruvate (pyruvic acid), 2 NADH

TRY IT 1. Glycolysis Summary

✓ Takes place in the _____

✓ _____ (no oxygen)

- ✓ Glucose "splits" into two 3carbon molecules of _____
- ✓ NAD+ is _____ by gaining electrons & produces _____

✓ _____ of 4 ATP

✓ Requires an _____ of 2 ATP

Net ATP production = _____

TRY IT 1. Glycolysis Summary

- ✓ Takes place in the **Cytoplasm**
- Anaerobic (no oxygen)
- ✓ Glucose "splits" into two 3carbon molecules of **Pyruvate**
- ✓ NAD+ is **reduced** by gaining electrons & produces **2 NADH**
- ✓ **Phosphorylation** to make 4 ATP
- ✓ Requires an **input** of 2 ATP
- ✓ Net ATP production = <u>2 ATP</u>

All Steps of Cell Respiration occur in mitochondria except **Glycolysis**

Review of Mitochondria Function

- "____" of the cell: They produce almost all of the ____ the cell uses.
- Possess their own _____.
- Can <u>independent</u> of the cell.
- All cells have mitochondria
 (_____&_____)

All Steps of Cell Respiration occur in mitochondria except **Glycolysis**

Review of Mitochondria Function

- Powerhouse" of the cell: They produce almost all of the ATP the cell uses.
- Possess their own DNA.
- Can replicate independent of the cell.
- All cells have mitochondria (prokaryotic & eukaryotic).

Review of Mitochondria Structure

- Double Membrane System
 - Smooth Outer membrane.
 - Folded Inner membrane.
 - Folds called Cristae.
 - Space inside Cristae called the Matrix.

The molecules that produce most of the ATP are embedded in the Inner Membrane.

Review of Mitochondria Structure

- Outer Compartment: Space between inner and outer membrane.
 - Hydrogen ions accumulate here.

Process of Cellular Respiration

Cell Respiration can take one of two pathways, depending upon whether **OXYGEN is present or not**:

After Glycolysis ... Summary

ANAEROBIC PATHWAYS

- Metabolism of glucose
 WITHOUT OXYGEN to generate ATP.
- Generates ATP much more quickly than aerobic.
- Preferred source of ATP production when energy is needed in short bursts (Sprinting).
- Fermentation

AEROBIC PATHWAYS

- Metabolism of glucose USING OXYGEN to generate ATP.
- OXYGEN is Final Electron Acceptor.
- Generates much more ATP per molecule of glucose metabolized than anaerobic respiration (Efficient).
- <u>Krebs Cycle (Citric Acid)</u>
- <u>Electron Transport Chain</u> (ETC)

Two Anaerobic Pathways

Alcohol Fermentation

C=0

CH₃

2 NADH

+ 2 H+

2 Pyruvate

c=0

CH₃

2 Acetaldehyde

> 2 CO₂

Aerobic Processes

- If O₂ is present following glycolysis, pyruvate is modified and enters the mitochondria.
- ♦ Here pyruvate is broken down completely into CO₂ → Krebs Cycle (Citric Acid Cycle).
- Energy storage molecules like
 NADH and ATP are produced.
- This is why the mitochondria is called the powerhouse of the cell.

Aerobic Processes

- In PROKARYOTES, if O₂ is present following glycolysis, pyruvate is modified and remains in the cytoplasm.
- ♦ Here pyruvate is broken down completely into CO₂
 → Krebs Cycle.
- Energy storage molecules like **NADH** and **ATP** are produced.

Complete the Venn Diagram: Aerobic vs. Anaerobic Respiration

Complete the Venn Diagram: Aerobic vs. Anaerobic Respiration

TRY IT Complete the table, comparing Aerobic & Anaerobic Respiration

	Aerobic Respiration	Anaerobic Respiration
Oxygen	Required	NOT Required
Location	Mitochondria	Cytoplasm
Steps	Glycolysis Kreb's Cycle Electron Transport Chain	Glycolysis Fermentation Alcohol or Lactic Acid
Total ATP Produced	Produces 36 ATP	Produces 2 ATP

TRY IT Complete the table, comparing Aerobic & Anaerobic Respiration

	Aerobic Respiration	Anaerobic Respiration
Oxygen	Is required	Is not required
Location	Occurs in the mitochondria	Occurs in the cytoplasm
Steps	 Glycolysis Citric acid cycle Electron Transport Chain 	Glycolysis Fermentation • Lactic acid • Alcohol
Total ATP Produced	Produces 36 ATP	Produces 2 ATP (no additional ATP)